- MGALACTICOMM

Flash Protocol Programmer's Guide

by Tim Stryker
Copyright (c) 1989 Galacticomm, Inc.
All Rights Reserved

This information is for use by Galacticomm "FLASH" Protocol Licensees ONLY.

% * * * %

What is the Flash Protocol?

S ——————

The Flash Protocol is designed for use in situations where multiple
computer users are online to a central device (the "host'" computer), and
where the need exists for rapid ('"'real-time'") interaction between the
users. Examples of such situations are: multi-player real-time games,
multi-user real-time ''chat" systems, multi-user real-time teleconferencing.

The Flash Protocol is an implementation of something I call the
key-by-key (KBK) process. Here is the concept:

In any multi-user real-time interaction, there is some kind of shared
underlying entity (the '"'model'") which is the same for all participating
users., User input affects this model in various ways, but the
essential thing is that all users access the same model at any given
point in time. The traditional approach to this issue has been to
maintain the model in the host computer, and to use the raw input data
coming into the host from the users (typically keystrokes on computer
keyboards) to perform in the host the operations determining how the
user input affects the model; the results of these operations are then
transmitted to each user's computer or terminal, for display. 1In the
KBK process, the model is maintained in each user's computer (so that
there are as many ''copies'" of the model running as there are users),
and the separate copies of the model are kept equivalent to one another
by ensuring that each user's computer is informed of the raw input
created by all participating users, in the exact order in which the
input is received by the host.

Several points may need clarification: (1) all users need not have the
same information displayed, under either the traditional process or
KBK. Any aspect of the situation that is not precisely the same among
the users is by definition not part of the "model'". 1In the KBK
process, each user's computer displays that information which its own
particular user is entitled to see, based on its own internal
representation of the model. This may be all of it (with or without
additional, non-model information), selective portions of it (which
portions may usefully differ from user to user), or, in unusual
situations, none of it. (2) In order for the application of user input
to have the same effect on all user copies of the model, all user

. Modem: (305) 583-7808
Galacticomm, Inc. 4101 S.W. 47 Ave. s s

Suite 101, Fort Lauderdale, FL 33314 V' ice: (305) 583-5990

computers must in some sense ''start'" with the same specific
parameterizations of the model. The KBK process does not depend on the
details as to how this is brought about == it might be by simultaneous
invocations of the model-maintaining programs at each user site, or by
any of a variety of synchronizing mechanisms, which may include the
ability to hold certain users in a kind of "holding pool" (a sub-model
in its own right) until proper conditions for synchronization can be
established. (3) The KBK process does not depend on all user input
being broadcast by the host to the user machines, only that portion
that affects the model. Similarly, it does not depend on only user
input information being broadcast by the host to the user machines:
other data, both model-related and not, may accompany the user input,
and may or may not be the same for all users. The essential condition
is this: any data which has an effect on the model must be broadcast
the same, and in the same order, to all participating users.

The KBK process does not depend on the types of computers used, the
method of interconnection, or the protocols used in the interconnection
links. 1Its essential starting conditions are: a host computer,
multiple user computers, a means of conveying information
bidirectionally between them, and a means of synchronization that can
be relied upon to bring their copies of a "model" into equivalence at
appropriate points. The process itself comprises the transmission of
raw or minimally predigested input data from the users to the host, and
the "broadcast" from the host back to each participating user's machine
of the input data, each piece of the input data being tagged as to
which specific user's machine the input came from, such that all users'
machines are able to update their internal representations of the model
in an equivalent manner.

The advantages of this are (a) virtually unlimited display-update
speed, (b) independence of game or application particulars from the
connectivity mechanism (i.e. Sysops need not update any BBS software in
order for users to be able to run new games), (c) elimination of the need
for standards in output codes (i.e. high-resolution bit-mapped graphics
multi-player games and all manner of sound effects, etc. become possible
without any change or impact of any kind on the protocol), (d) the size of
BBS memory does not need to constantly increase over time in order to
support more and more games, and (e) a unique style of "copy protection"
becomes possible which is trouble-free to legitimate users yet restrictive
to "pirates".

The disadvantages of this are (a) separate user-side software must be
developed for each hardware platform wishing to participate in a given game
or other application, (b) the need for startup synchronization constrains
game design, and (c) certain aspects of game "scoring'", such as cumulative
totals and top-ten listings, which are trivial to implement under the
traditional architecture, become so problematic under KBK that we recommend
not doing them at all for the time being.

Marketing Considerations

Of special interest to 3rd-party marketeers are the financial dynamics
of the Flash game marketplace, in contrast to traditional 3rd-party add-on
software. Rather than your prospects being Sysops, of which there are maybe
a few hundred, total, running entertainment-oriented systems, your prospects
become the users of those systems, of which there are hundreds of thousands.
So, rather than writing a great game and selling maybe 40 or 50 copies to
Sysops at $400 each, you can write a phenomenal game and sell maybe 4000 or
5000 copies at $25 each. And that's with today's numbers =-- as the concept
expands in popularity and the world becomes more modem-aware, million-dollar
games are not far off.

You will find existing and prospective Sysops of The Major BBS
Entertainment Edition very supportive of your efforts... there is a unique
4-way symbiosis here, between you, the Sysops, their users, and Galacticomm.
The better your games are, the better the Sysops will like it, because
people will be using their systems more and more in order to play the games.
The Sysops don't have to do any extra work to make this happen, either: no
costs for software licenses, no bothering with source code and so forth, and
most importantly, no increase in memory requirements to run each new game
that comes out. There is no limit on the number of Flash games that an
Entertainment Edition BBS can support, since the body of each game rumns in
the users' computers, not in the BBS!

Galacticomm has a distinct motive for your success too, both because
of the $l-a-copy royalties and because the more users your games attract to
our Sysops, the more lines and modem hardware they will wish to install.
It's a 4-way win-win-win-win situation.

We recommend that you offer both a "shareware'" and a '"mon-shareware"
version of your first few titles. Once this Flash technology is well
established, people will be willing to buy game software sight unseen, on
the basis of the reputation of its designers. But in the early going, you
will have much higher sales if you offer a scaled-back or "demo" copy of
each game (perhaps with a limited playing time, or number of plays) for
free, with the full-fledged version available only after the user pays you.
The Flash Protocol is able, in Entertainment Edition Release F and later, to
distinguish between shareware and non-shareware copies of the same game, and
to enforce the restriction that no more than one person may use a given
non-shareware copy on one system at one time.

The Sources

Here is an overview of the files supplied:

MAKEFC

FC
FCNOISE
FLCOMM
FLKICK
GENUTL
DOSFACE

FCNOISE
FLCOMM
DOSFACE
FKCODE
PORTABLE

SERCOM
NOISES
FLUTIL
MODEL

SCN2ASM
FLSCNBGN
FLSCNEND
MFCSCNS
FCHAT
FCHELP
FCHELPT

SERCOM
NOISES
FLUTIL
FCSCNS
MBBST

LFC
LFC

FC10

BAT

ASM
ASM
ASM
MAC

EXE
ASM
ASM
BAT
SCN
SCN
SCN

OBJ
OBJ
OBJ
OBJ
LIB

BAT
LNK

EXE

...makes Flash Chat

..+.Flash Chat mainl

V1.0 from scratch using Turbo C 2.0

ine

+.+.Flash Chat C-level interrupt-driven sound effects

...general purpose
...general purpose
...standard "BBS To
...standard "BBS To

...Flash Chat #defi
...general purpose

user—-side Flash Protocol utilities
"rtkick" utility for Flash games
ols"

ols"

nes for sound effects
user-side Flash Protocol globals

.+..standard "BBS Tools"
.+.8tandard "BBS Tools"
...standard "BBS Tools"

...general purpose
...general purpose
««sgeneral purpose
...general purpose

.+.general purpose
...general purpose
...general purpose
...Flash Chat scree
+..Flash Chat main
...Flash Chat chat
...Flash Chat termi

...result of assemb
...result of assemb
...result of assemb

interrupt—driven serial I/0 manager
interrupt—-driven sound effects driver
assembly-level utilities
Microsoft/Turbo C "large" model EQUs

utility to make screens EXE-resident
screens-begin assembly source
screens—end assembly source

n-table maker

screen image

mode help screen image

nal mode help screen image

ling SERCOM.ASM
ling NOISES.ASM
ling FLUTIL.ASM

...result of running MFCSCNS.BAT

...standard "BBS Tools"

...Flash Chat TLINK command
.+..Flash Chat TLINK control file

...Flash Chat V1.0

standalone EXE file

Flash Chat is supplied here primarily as an example of the use of the
Flash Protocol, so that you can see how the various utilities fit together.
It is kind of fun in its own right, though, and you may wish to "port" it to
hardware/software platforms other than IBM-PC/MS-DOS. 1If you wish to port
Flash Attack to other platforms, we are asking that you do Flash Chat first,
as a demonstration of proficiency (and also because 95% of the work of
porting Flash Attack will be finished, once you have ported Flash Chat!).

There is room for significant improvement of Flash Chat, though, as a
straight chat facility: buffer "scrollback", private "whispers", a "log to
disk'" option, and so forth. Feel free to use this code as a starting point
for enhancement in any direction you choose.

Initialization

The subroutine init() in FC.C demonstrates the 3 central actions
necessary to overall system initialization:

inicom(argc,argv) «..8ets up interrupt-driven serial communications
using COM port from command line or user menu

ininoi() +..8ets up interrupt-driven sound effects, and
"fast ticker" auto-increment at 145.6 Hz

setspc(spckys) ...sets up special (non-printable) key codes for
transparent pass—through by Flash Protocol

The first two are pretty straightforward to understand, but setspc()
may take some explanation. The Flash Protocol is optimized for speed. You
may configure up to 11 different keystroke codes such that both the code
itself and the indication as to which user issued it are condensed into a
single byte when broadcast by the host. You may also have up to another 19
key codes of keys which would normally take two bytes (the IBM "extended"
keys, like cursor arrows and function keys) and encode them down to one data
byte each (these then take 2 bytes when broadcast, rather than 3). Any CTRL
characters you will want to handle, such as carriage-return (13) or
backspace (8) will need to appear in this list as well.

You pass the key codes you want treated these special ways to setspc().
The argument to setspc() is expected to be the address of an integer array,
the first eleven elements of which are the the "most common" keys (in Flash
Attack, for example, these are the 8 tank-movement keys, the letters M and
P, and function key F1), and the remainder of which, up to a total of 30
items, are any other non-printable ASCII or two-byte extended key codes you
will be passing to ecoutp() later. (Recall that subroutine getchc() in
MBBST.LIB returns two-byte key codes in integer format when extended keys
are hit, as #defined in file FKCODE.H).

SOLO Operation

One of the options open to the user in inicom() is that of going SOLO,
without a COM port. If this option is selected, then the global variable
"solo" (declared external in FLCOMM.H) is set, and no COM port stuff is
initialized. However, the error-corrected I/0 routines ecoutp() and ecinp()

in FLCOMM.C sense the solo flag, to simulate the effect of data forwarded to
the host being picked up upon broadcast.

Your program can of course do whatever it likes with the SOLO case. We
recommend making it do little more than give the user a faint taste of what
he or she will see when online... in other words, drawing a sharp
distinction between a SOLO game and a one-player game played while online
to a BBS. It is very desirable to set up a computer-animated opponent for
the user to play against if alone, but if you enable this for SOLO
operation, you have nothing more than a conventional single-user computer
game on your hands, of which there are already thousands. By reserving the
computer-animated opponent feature for single-player online operation, you
create the basis for online competition: one user will SCAN another user in
the game and join up, and pretty soon you have a group of players going,
exchanging word-of-mouth advertising and building fun momentum.

Note that since there is no point to "terminal mode" in the SOLO case,
your program will bypass the initial LINEUP, so the '"names'" array will not
be filled in. You can just make an arbitrary assignment, as Flash Chat
does, or prompt the user manually.

Terminal Mode

A key to the advent of the Flash concept was the realization that the
game programmer does not have to write a sufficiently powerful terminal
emulator/autodialer to convince users to use it instead of their own.
Users can dial into the BBS using whatever package they are accustomed to,
and then "shell out" to a Flash game. Naturally, if you feel inclined to
write a sophisticated front-end to your Flash games that competes on an
even footing with ProComm, Telix, and so forth, go right ahead. But this
will tend to (a) increase the size of your EXE file, making people more
reluctant to upload/download it, (b) make your code more difficult to port
to other platforms, and (c) take up months of your programming time that
could be more productively spent writing amazing new games rather than
re-inventing the wheel.

A rough-and-ready form of terminal mode that can be used in both
shelled-out and standalone scenarios appears in function termnl() in FC.C.
The passed parameter is an introductory string or information message to be
displayed to the user once the screen is in place. The first call to this
routine clears the terminal screen; subsequent calls will pick up where the
previous one left off (even if the screen has held something very different
in the meantime).

The functions locate(), setatr(), printf(), rstloc(), and setwin() are
all from MBBST.LIB and are documented in The Major BBS Programmer's Guide.
Assembly source to these routines is not available.

Onset of Flash operation is triggered by the call to flashm() in case
F9 of the switch in termnl(). Parameters passed to flashm() are the game

name and version code, and the 32-bit "serial number" of the copy, or OL
(don't forget the 'L'!) if shareware. When the BBS digests the results of
this, it sends 6 NULs followed by the initial LINEUP command, which gets
parsed by the call to parsln(). If parsln returns 0, then some sort of
attempt, innocent or otherwise, has been made to subvert the normal startup
process, and we recommend treating this the same as a '"NO INITIAL LINEUP"
condition.

If the LINEUP is successful, then '"npyrs" contains the number of people
now in the current '"Flash pool'", "names'" is an array of pointers to their
User-IDs, and '"rseed" is a number suitable for use as a seed for a common
pseudo-random number generator (all of these globals are declared external,
for your convenience, in FLCOMM.H). The idea behind '"rseed" is that all
machines in a pool must make the identical "pseudo-random'" decisions in
order for their models to remain identical. A sample pseudo-random routine
is given here as the function rnd() in FC.C. 1If you have a game involving
certain random elements, at the start of each game you could set
rndnum=rseed and the game would proceed, seemingly randomly but totally "in
sync'" among all machines from that point forward.

The LINEUP, by the way, contains useful information that parsln()
discards. If the pool is taking place in a private channel, and the User-ID
of the owner of that channel is present in the LINEUP, then that User-ID is
preceded by an asterisk. You can use this to give the owner of a chaunnel
special privileges (like, to knock obnoxious people out of the pool, or to
assign people to teams, etc.). Also, the "rseed" value is the value of
now() on the host system (see DOSFACE.C), so you can have time-of-day
dependent activity in any game. A '"night game" of Flash Golf, for example,
might be quite different from onme in the daytime!

Flash Mode

Once the various shenanigans toward the tail end of function termnl()
in FC.C are complete, subsequent calls to ecinp() will return one of several
things (as #defined in FLCOMM.H):

- ...nothing happening
-TICK ++.a tick of the 18 Hz master clock in the host has elapsed

-REMOVE ...one of the users in this Flash pool has gone away; call
ecinp() again and subtract '0' to find out which one,
and reassign the last guy to this number if it wasn't
the last guy himself that got removed

-LINEUP .+ .another user just joined this Flash pool, call parsln()
to update the '"names" array and npyrs, and be careful
not to assume that anything in our own machine matches
that in the new user's machine from this point forward

except the LINEUP-derived info, or the results of actions
that we specifically henceforth arrange to happen

-NODATA ...contact with the host has been lost
<other»> «+.a keystroke code, from player number "pyrn"
(-TICK, -REMOVE, and -LINEUP are discussed below at some length.)

As far as local keyboard activity is concerned, you can just hand over
anything that comes in via getchec() to ecoutp() and forget about it. Your
program shouldn't be processing these keystrokes before hearing them back
from the host via broadcast (this rule is not absolute but you should think
long and hard about potential implications before violating it).

To leave Flash mode, we recommend calling lvpool() twice. The BBS will
take the user out of the pool upon receipt of 3 CTRL-X's, so you should send
6 just to be on the safe side (the excess will be ignored). If you wanted
to be elegant about it, your program could wait to see its own REMOVE
command fly past before moving on, but this has not proven to be necessary
in practice.

The -TICK Command

The reason for -TICK (and the suggested prertk() call resulting from
it) is that this way you can time events and arrange for delayed actioms in
a way that is completely congruent among users. If you did time delays
based on a ticker local to each user's computer, then yes, they would all
agree about the order of varioue activities most of the time, because
their internal crystals are all very accurate and they wouldn't drift with
respect to one another by more than a few percent per year. But when the
whole future of a simulation hinges on whether Cinderella does or does not
manage to hop out of the coach before it turns back into a pumpkin at the
stroke of midnight, "most of the time" is not good enough, and we wish to be
certain that all machines in the pool will be making the identical decisions
as to the exact order and timing of events., Using rtkick() delay values in
units of 18 Hz "ticks" and calling prertk() based on -TICK returns from
ecinp() makes this possible,

The —-REMOVE Command

-REMOVE is fairly straightforward. The only trickery here has to do
with conservation of player numbers: we want the people in the pool to
always have player numbers 0 to npyrs-1, so if a user is removed from the
middle someplace, we reassign the guy at the end to the vacated number...
the viability of this hinges on the BBS doing the identical thing at the
identical time, which it does. (Note that if the removed user was already
the highest-numbered user, no reassignment is necessary or desirable.)

The -LINEUP Command

The receipt of -LINEUP is potentially the most troublesome. 1In Flash
Chat itself there is no problem, because the "model'" is an amorphous,
utterly forgiving thing that has no particular history to its essentials, so
that a full chat window and an empty one can be treated as essentially
equivalent. However, in a more normal game environment you will have to
think through very carefully how you will handle new entries into the pool
during a game in progress. Remember that in general the new entrant won't
have any idea what the game starting conditions were, or what keystrokes
were issued by the players to change things since that time. In particular,
the new entrant won't even know, a priori, whether or not a game is "in

progress''!

There are many ways to deal with this, and I'm not violently pleased
with any of them. Rather than hand you a pre-packaged method, let me throw
out a few thoughts and perhaps you can come up with a better way. One
option is to make the assumption upon initial entry that a game is always
"in progress'", so that the end of each game is implicitly the beginning of
another, each machine being expected to emit a special '"game change'
pseudo-keystroke code upon detecting the transition. A new entrant, then,
would remain in a kind of limbo until receiving one or more of these
pseudocodes, and the machines already playing would know not to accept input
from the newcomer in the interval between receipt of the LINEUP command and
the first receipt of a broadcast pseudocode. Another method, the one used
in Flash Attack, has all machines '"sound off", when the LINEUP is received,
as to whether they are in the game or just in chat. A complicated process
of accepting or ignoring input from the various machines then ensues, with
more fun as arbitrary patterns of participants and non-participants getting
REMOVEd and re-installed come into play.

There is a key consideration in all this that we have not talked about
yet, and that is the fact that the Flash Protocol is asymmetrical. Data
transmitted from the host to each user's machine is error-protected, but
keystrokes and whatnot going the other direction are not! The tradeoff here
is one of error protection vs. responsiveness: given that it is implicit in
KBK that model-affecting actions be broadcast back from the host to each
machine before they are processed, it is vital to make the round-trip of a
user's keystrokes as snappy as possible. Error-protecting a byte with any
margin for safety requires at least 3 bytes total, so if it were 3 bytes out
and 3 bytes back, we're talking 6 byte-times minimum between hitting the
key and seeing the result, which at 1200 bps is 1/20th of a second, already
at the fringe of human perceptibility. Given the practicalities of actual
fact, many scenarios yield longer turnaround time, so we would have serious
perceived sluggishness if not for cutting the 6 byte-times to 4 by sending
each byte from the user machines to the host unprotected. If it gets
clobbered, hey, at least it will be broadcast back to all machines in the
identical clobbered form, so all machines will stay in sync. And most of

the time it simply won't get clobbered, or will get clobbered to a value
that all machines ignore, etc.

The implication of Flash Protocol asymmetry in the handling of LINEUPs
received while a game is in progress is that you must take into account that
your 'game-change" or "sound off" pseudocodes can get clobbered on their way
out the door. A mechanism for monitoring the returning broadcast stream for
one's own pseudocodes is implied, with re-emission of them if not detected
ou the rebound within a certain period of time. Like I say, I'm not exactly
thrilled with it. Let me know if you come up with something better!

Game Duration

The requirement for initial synchronization between all users' copies
of the "model" constrains game design. The most straightforward way of
dealing with this is to keep games short. This way, everybody can easily
get in sync at the beginning of each game, and if no game takes more than a
few minutes to play, nobody that enters the pool in the middle of one has to
wait very long.

Another approach, if you want to have longer games, is to schedule them
at set times. Everybody in the pool at 8 P.M., say, gets to play Flash
Murder-Mystery for the next two hours or until it's solved, whichever comes
first. The next game starts at 10 P.M., like a movie. Those attempting to
enter outside these guidelines are politely told to come back later (your
game software can itself enforce this, without modification to the BBS, by
just looking at the now() value in the LINEUP random-number seed and calling
lvpool() etc. if the time does not satisfy your tests).

A third approach would be to actually transfer game status data from a
machine with the game in progress into each newcomer, by way of the
broadcast pipeline! You could set it up so that machine #0, whichever it
happened to be, would have the responsibility of spitting out, through some
kind of pseudo-keystroke code sequence, enough game-status data that a new
entrant to the Flash pool could pick up playing a game in the middle. This
is straightforward in principle but tricky to implement when the possibility
of transmission errors (not to mention changes in the status over the course
of the finite time necessary for transmission) is taken into account.

Sound Effects

By calling ininoi() at the beginning of your program, and finnoi() at
the end, you are able to take advantage of the technique shown in FCNOISE.C
to generate interrupt-driven foreground and background sound effects.

The essential concept is that you arrange for your C language routine
to be invoked every 1/145.6th of a secound, regardless of what else may be

= }1 =

going on in the machine at the time. Your C language routine then computes
an integer "period" for the speaker oscillator and returns that as its
value. A value of 100 is almost inaudibly high-pitched, a value of 2000 is
mid-range, and a value above 50,000 or so degenerates into a series of
clicks. Very smooth "glissandos" and whatnot can be achieved by changing
the values you return by small increments each 1/145.6th of a second.

To the routine noise() in FCNOISE.C, sound codes below 100 are
background codes. This means that they go on for a substantial interval but
may be interrupted briefly for foreground sounds. Foreground sounds, when
finished, return to the background sound they interrupted; background
sounds, when done, terminate in silence, Of course they need not terminate
at all, like the base CONDITION RED siren in Flash Attack which goes on and
on until overridden by an explicit subroutine call with the background code
for silence.

X.25 Considerations

Our position at present is that the Flash Protocol is not supported
over X.25 packet-switch networks. The main reason for this is that delays
of up to several seconds are not uncommon on these networks, and this turns
the whole responsiveness issue discussed above on its head. The way in
which ecinp() decides to report back the -NODATA code is by way of the
"fstick" test at the end of prcrin() in FLCOMM.C. "fstick'" is cleared each
time rdser() returns an actual character, so when it builds up to a value of
150 it means that more than a whole second has gone by without the receipt
of a single byte from the COM port. This happens very often when trying to
play Flash Anything over X.25.

Feel free to experiment with larger numbers than 150 as a NODATA cutoff
point, but be aware that frequent delays of more than a second in the
echoing of a user's actions to his or her screen will not be well-received
by the public. A thought: Flash Chat is unique in that the "model" does not
include the exact contents of people's chat windows, so you could process
the local user's keystrokes "on the way out", and specifically refrain from
doing so upon receipt of their re-broadcast, meanwhile treating other
users' keystrokes as usual! Then you could stretch out that 150 as far as
you like and the only drawbacks would be (a) delay in recognizing legitimate
loss of contact, and (b) a certain '"choppiness'" in other people's apparent
typing habits.

Limitations

The Flash Protocol is limited to 6 users per pool for shareware
editions, and 10 users per pool for non-shareware. The number 6 is
arbitrary but seems useful for practical purposes. Note that as supplied,
Flash Chat can only exist as shareware; in order to have a non-zero serial
number you would have to deal with the possibility of ten users in the pool

—12_.

somehow (there is no room for another chat window on the screen, as it
stands).

You may impose a lesser maximum if you like, by having your program
look at "npyrs" after its first LINEUP. If this number is higher than you
can accept, your program could voluntarily remove itself by calling lvpool()
a couple of times, then termnl(). The code dealing with the case of a user
already in the pool, and seeing the overflowed LINEUP go by would simply
ignore it in the knowledge that the excess user was about to REMOVE itself.
Your message string passed as the argument to termnl() could explain to the
user why his attempt at entry was being denied.

Note also that, except for the 30 specials passed to setspc(), only
7-bit ASCII data is permitted. This is because the parity bit is used in a
special way in the low levels of the Flash Protocol. If you vitally need
full 8-bit data for some reason, you can put front-ends on ecinp() and
ecoutp() to "escape" the high bit, but most of the time (such as for foreign
language support) the capacity for up to 30 special key codes will suffice.

Anti-Piracy

The way the duplicate-detection feature works is that the Flash game
identifies its own serial number (if any) to the BBS as part of its attempt
to enter Flash mode. The BBS then looks at the number and asks itself, "Is
there anybody else on this system in Flash Mode using this same game right
now with this same serial number?" If there is, it denies the user entry.

To combat the possibility of people manually entering the Flash mode
entry sequence with a different serial number than the one they actually
have (or any of a variety of other modes of subterfuge), the BBS includes
the serial number of the copy it thinks it's talking to in the initial
LINEUP back to that copy, and the copy itself checks to make sure that they
match.

This takes care of most forms of casual piracy, but be aware that if
people disassemble your EXE file they may be able to figure a way around
this. A first-level measure of protection against this is to embed several
copies of the serial number in several spots in the EXE file, each of them
encrypted using a different method (e.g. XORing with certain data, rotating
bits and then XORing, interspersing junk bits with the real ones, etc.).
Your code can then check all of the copies against each other at run time
before proceeding.

The most difficult patch-pirate to guard against is the one that goes
after the code that does the checking or transmitting, and patches it so
that the check automatically passes or the shareware cue gets transmitted
every time even though the serial number is nonzero. You can have your code
verify a CRC over its whole executable self to guard against this, but the
patch-pirate may be able to locate the code that does this, and disable
it. The ouly protection against this guy is to write the code in some

terminally-obscure way so that he can't follow it, or to rely on legal
remedies.

Since writing obscure code harms only you in the long rum, it is
vital to retain your ultimate legal protection, the Copyright to the code.
Be sure that every copy of your program leaving your premises has your
Copyright notice on it, in the form:

Copyright <year> <author or sponsor>

You can use the abbreviation "Copr." instead of "Copyright", but do not
use "(C)", except as a supplement. A letter C between parentheses has no
legal standing. (A letter C inside a circle does have legal standing as a
valid substitute for the word "Copyright" but most computer character sets
do not include one of these.) If you leave out either the year or the name'
of the Copyright owner, it also has no legal standing. (There is supposedly
an international intellectual property law to which the U.S. has just become
party, which eliminates the absolute requirement for these notices, but the
issues have not yet been fully tested im court so why take any chances?)

Areas to Explore

There are any number of fantastic single-player games on the market
that could be made into phenomenal multi-player games with almost no effort.
Any game that pits the user against a computer-controlled entity or entities
with the same "powers'" as the player, is fair game. In the bowels of any
such game there is probably a '"move generator construct, which takes input
from the player's keyboard when it is the player's "turn", and input from an
algorithm when it is the computer—oontrolled entity's "turn" (even in
real-time games, players do take turns, it's just that the turns are very
quick and most of the time they consist of "pass"). By modifying this to
take everybody's input from the broadcast receive-buffer, and to then update
its own display based on what its own user is supposed to see, a game like
this can be made multi-user almost trivially. Any existing computer games
company may be able to transform its product line virtually overnight into a
panoply of sensational bit-mapped graphic, multi-player-by-modem games.

The biggest possibilities for innovation, though, are in the areas of
game design which have multiple playere in mind from the word go. Consider
asymmetrlc games, in which people with different kinds of roles access the

"model" from very different points of view (e. g. air-traffic controller and
pilots, submarines and surface ships, nav1gator/p1lot/gunner teams, etc.).
3-D perspective-view chase or maze or racing games, high-res animated
gambling halls, and of course, D&D-style multi-player graphic adventures are
a few more of the possibilities that come to mind.

As communications technology evolves, higher speed modems will allow more
voluminous input: either more people per Flash pool or greater input volume
per user... joysticks today, "power gloves' tomorrow? As the quest for
Virtual Reality unfolds, the abundance of opportunity is staggering.

