THE GALACTICOMM

SOFTWARE
BREAKTHROUGH

LIBRARY REFERENCE GUIDE

Revision N
January, 1994

(C) Copyright 1986-1994 by Galacticomm Inc.

All rights reserved. No portion of this document or
the accompanying software may be reproduced or
stored in any medium without prior written
authorization from Galacticomm, Inc., except by a
reviewer who wishes to quote brief passages in
connection with a review for a newspaper or
magazine.

Information in this document is subject to change
without notice. This document and any related
software are sold "as is". Galacticomm Inc. makes
no representations or warranties with respect to the
contents of this document, or to the software
described, and specifically disclaims any implied
warranties of merchantability or fitness for any
particular purpose. Liability for the information
in this document, and for the software described
herein, shall be limited to the purchase price of
the document or software.

This document discusses computer software and other
copyrighted materials that may be restricted by
license agreements or other protections. This
document shall not be used as a written exception to
any license agreement, and shall not be construed by
any party as a license, authorization, or waiver of
rights by the owner or copyright holder of the
software discussed.

The Major BBS is a registered trademark of
Galacticomm, Inc. Galacticomm, the Galacticomm
logo, Advanced LAN Option, GalactiBoard, GalactiBox,
and X.25 Software Option are trademarks of
Galacticomm, Inc. All other products are trademarks
or registered trademarks of their respective
companies.



THE GALACTICOMM

SOFTWARE
BREAKTHROUGH

LIBRARY REFERENCE GUIDE

ROUTINE DESCRIPTICON PAGE
btusiz (nchan,isiz,0siz) Size (bytes) of dynamic memory needed 149
btulsz (nchan, isiz,csiz) Long version of btusiz() 116
btuitz (region) Initialize the SOFTWARE BREAKTHROUGH 112
btuitz (region} Initialize for multi-task environment 111
btumxs (bdrate) Set maximum data speed 128
INITIALIZATION btudef (schan, sport,n) Define channels 82
btusdf (schan,n, chtype) Super-define channels 144
btuudf (schan,n) Un-define channels 176
bturti (n, rtirou) Define real-time interrupt routine 140
btuirp (comno) Use COM1/2/3/4 port as timing source 110
btuhit (irgno) Hook I/0 interrupts from UART 98
btusen () Scan channels for need of service 141
btustes (chan) Status of a channel 153
STATUS btuibw (chan) Input bytes waiting 103
btuocba (chan) Qutput buffer space (bytes) available 130
btueba (chan) Echo puffer space (bytes) available 85
btuinj (chan, status) Inject status-code into a channel 107
COMMAND btucmd (chan, cmdatg) Command channel 58
btuinp{chan, inbuff) Input from channel (ASCIIZ string) 108
RECEIVING btuict (chan, inbuff) Input from channel {by trigger count) 105
btuica{chan, inbuff,siz) Input from channel (up to siz bytes) 104
btutrg(chan,nbyt) Set input byte count trigger 167
btuxmt (chan,datstg) Transmit to channel (ASCIIZ string) 189
btuxct (chan,nbyt,datstg) Transmit to channel (by byte count) 182
ARENGHIETLNG btuxmn (chan, datstg) Non-clearable ASCII transmit 187
btux29 (chan,nbyt,datstg) Transmit an X.29 string to remote PAD 179
btuxlt {(oldchr, newchr) Set input translation table 183
btumil {(chan,maxinl) Set max input length / word-wrap on/foff 121
btutrm{chan, crchar) Set input line terminator character 169
RECEIVER btulok (chan, onoff) Set input lockout en/off 115
MCDES btuerp {chan, onoff) Pass/block input bytes with errors 50
btuusp (chan, onoff) Special UART polling method 177
btuchi (chan, rouadr) Set character input interceptor 47
btuche (chan, onoff) Call btuchi() when echo buffer empties 45
btulfd (chan, 1fchar) Set linefeed character (follows CR) 114
TRANSMITTER btutsw(chan,width) Set terminal screen width 1172
MODES btuscr (chan, softer) Set soft-CR (for output word-wrap) 143
btuhcr (chan, harder) Set hard-CR (for output word-wrap) 94
btuces (chan, onoff) Enable/disable output-empty status codes 131
btubrt (chan, bdrate) Set channel’s baud rate 37
RECEIVER/ btuech (chan, onoff) Set echo on/off 86
TRANSMITTER btubse (chan, bachar) Set backspace echo character 40
MODES btupmt (chan, pmchar) Set prompt character 134
btuffo (chan, onoff) Enable receive FIFO for 16550 UART 92
btuhwh (chan, inpcut} Enable RTS/CTS hardware handshaking 101
btuxnf (chan, xon, xoff) Set XON/XOFF characters 192
btutru (chan, trunch) Set output-abort character i
Fiﬁ: gg;gg‘?’ btutrs (chan, onoff) Generate status 6 when ao aborted 170
THROTTLING btupbe (chan, pauach) Character to initiate screen pause 133
btuhpk (chan, hpkrou) Handle screen-pause keystroke 99
btucpe (chan, cpchar) Character to clear pause-counter 81
btuolk (chan, onoff) Lock out or resume output 132

btumon {(chan) Start/stop monitoring a channel 125,127

btumds () Get next displayed character 119,120

MONI&EING btumks (kyschr) Simulate a keystroke 123,124
DIAGNOSTICS btuhdr (chan, nbytes,buff) Capture information on channel 95
bturep (chan, statid) Report on channel statistics 135
btuset (chan, statid) Set and report channel statistics 147
bturst (chan) Reset a channel 136
btuclo(chan) Clear data ocutput buffer 55
UTILITIES btucli (chan) Clear data input buffer 54
btuclc{chan) Clear command ocutput buffer 53
btucls {chan) Clear status input buffer 56
btubsz(chan,isiz,osiz) Respecify input/output buffer sizes 42
SHUTDOWN btuend (} Shut down the SOFTWARE BREAKTHROUGH 89




1.0

2.0

3.0

4.0

CONTENTS

INTRODUCTION ..cvsvssscssssanannnnans R ————— 1
1.1 Galacticomm Hardware ........... S 2
ARCHITECTUBE « covis ovwassns A A W R —_— 5
2.1 Hardware Categories .............. S R Bl 7
2.2 ASCII versus Binary Input Modes ........ceeeeuen 17
2.3 ASCII versus Binary Output Modes ..........cc... 19
GLOBAL VARIABLES ...ccovvrnnsnnnnses P e 21
btudtr ..... DTR level after channel reset .......... 22
btuhrt e High-rate 65536 Hz counter ............. 23
btulan ..... LAN capability and status flags ........ 24
bturno ..... Registration number ...........c..... e 129
btusrs ..... Number of users licensed ........... sy 20
btuver ..... GSBL version code .......... . 1
Btux25 e e Whether or not GSBL supports X.25 ...... 28
ictact ..... Input characters read by btuict() ...... 29
lanrev ..... LAN SPX revision ........occ.... e 0
lansca ..... LAN SPX connections available .......... 31
lansop ..... LAN socket opened by btusdf() .......... 32
ticker ..... Seconds timer .........ve00 W VSR 33
*2540gN. wiwwe Count of ignored incoming packets ...... 34
¥250AE wwaes User data reporting flag ...cveevennnnns 35
THE SOFTWARE BREAKTHROUGH LIBRARY ROUTINES .......... 36

btubrt(chan,bdrate) .... Set channel’s baud rate .... 37
btubse(chan,bschar) .... Set backspace echo character 40
btubsz(chan,isiz,osiz) Respecify buffer sizes ..... 42

btuche (chan,onoff) ..... Call btuchi() on echo empty 45
btuchi (chan,rouadr) .... Set input char interceptor 47
btuclc(chan) seseeewnans Clear command output buffer 53
btucli(chan) s.soeass v Clear data input buffer .... 54
btucle(chan) .....cceeu- Clear data output buffer ... 55
btucls(chan) «.eseeees .. Clear status input buffer .. 56

GSBL-iii



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

btqud(chan endstg) .... Command channel ....... W
"A (or CONTROL-A) = ANSWER-CARRIER WITH Dmcrxons
"E (or CONTROL-E) = SET CHARACTER LENGTH TO 8 BITS
"F (or CONTROL-F) = SET SPEED TO 2400 BES ...... -
“H (or CONTROL-H) = SET SPEED TO 1200 BPS ........
"M (or CONTROL-M) = CONTINUOUSLY MONITOR FREQ .

"N (or CONTROL-N) = ONE STOP BIT ............ ¥

“S (or CONTROL-S) = SET CHARACTER LENGTH TO 7 BITS
“T (or CONTROL-T) = SET SPEED TO 300 BES .........
"W (or CONTROL-W) = TWO STOP BITS ........ T
"X (or CONTROL-X) = ANALOG LOOPBACK ORIGINA'I‘E MODE
“Y (or CONTROL-Y) = ANALOG LOOPBACK IN ANSWER MODE

ES<HHHRNOYOI-HDODHIQUO» | AV »*o

U I I I O U R

t

0 9 = DIAL 0 to 9 (ROTARY PULSE OR TOUCH TONE)
+ %, a, b, ¢, d = DIAL SPECIAL TOUCH-TONES ......
SET PARITY TO "EVEN" ...... e SR
SET PARITY TO "ODD™ wvuvnwasas vssiesnion FESPRP
SET PARITY TO "NONE" (NO PARITY BIT) ..ovvvenn
ANSWER-CARRIER WITH NO FRILLS ..... o .
DTMF RECEIVE MODE (ACCEPT TOUCH TONE INPUT) o
GTC GREETING (LAN) ........ R SR e
HOLD (DISCONNECT MODEM, BUT REMAIN OFF- HOOK)

IDENTIFY MODEM VERSICN ..... PSR — I —
IDENTIFY REVISION NUMBER ............... FRE
LINE ANALYZE ....... o b s s wiae s e e L
LISTEN FOR SPX CONNECI‘ION (LAN) wiale s e s s

LOWERCASE L) = RETURN 1200-BPS ERROR STATISTICS
MONITOR LINE AND ORIGINATE WITH DETECTIONS ...
ORIGINATE-CARRIER WITH NO FRILLS ...... e a e
PAUSE 5 SECONDS +.vvvevennnan. W O
PAUSE 2 SECONDS ..... - e S e S e e Pene
ROTARY (PULSE) DIAL SUBSEQUENT DIGITS n———
TOUCH-TONE DIAL SUBSEQUENT DIGITS ....... T
TERMINATE SPX CALL (LAN) ..... e e
RWAIT 1/10 OF A SECOND (HAYES AND UART) .......
DISABLE AUTOMATIC PAD ECHO PROGRAMMING .......
WAIT FOR DIAL TONE (TO PLACE OUTGOING CALL) ..
LAN Dialout Command: ‘W', digits, and 'M’ ...
X.25 Dialout Command: 'W', digits, ete., 'M’

[ = ENABLE ANSI GRAPHICS (AEEAIEY o an o R e

] = DISABLE ANSI GRAPHICS ........ FE N—
btucpc(chan,cpchar) .. Clear-pause character ........
btudef (schan,sport,n) Define channels .......... o
btueba(chan) ......... Echo buffer bytes ava1lab1e -
btuech(chan,onoff) ... Set echo on/off .....ieiinnn. .
btuend() .......... v Shut down ..cvvviniininnnnnnn.
btuerp(chan,cnoff) ... Pass/block input byte errors

btuffo(chan,onoff) ... Enable FIFO for 16550 UART
btuhcr (chan,harder) .. Set hard-CR (output wordwrap)
btuhdr (chan,nbyt ,buff) Capture information on channel
btuhit(irgno) ........ Hook I/0 interrupts from UART

GSBL-1iv



CONTENTS

btuhpk (chan,hpkrou) .. Handle screen-pause keystroke 99
btuhwh(chan,inpcut) .. Enable RTS/CTS handshaking ... 101
btuibw(chan) ...... ... Input bytes waiting .......... 103
btuica(chan,inbuf,siz) Input from channel (up to 512) 104
btuict (chan,inbuff) .. Input from channel (trig cnt) 105
btuinj(chan,status) .. Inject status into a channel 107
btuinp(chan,inbuff) .. Input from chan (ASCIIZ str) 108

btuirp(comno) ........ Use COM1/2/3/4 for timing .... 110
btuitm(region) ....... Initialize (multi-tasking) ... 111
btuitz(region) ..... .. Initialize ..coevevnnnnes s e 112
btulfd(chan,lfchar) .. Set linefeed character ....... 114
btulok(chan,onoff) ... Set input lockout on/off ..... 115
btulsz(nchan,isz,osz) Long version of btugiz() somws 116
btumds() .ceeseeccasas Get next displayed character.. 119
btumds2() c.ceeeecaass Get next displayed character.. 120
btumil(chan,maxinl) .. Set input length / wordwrap .. 121
btumks (kyschr) ....... Simulate a keystroke ...... e 1123
btumks2(kyschr) ...... Simulate a keystroke ........n 124
btumon(chan) ..... .... Start/stop monitoring chan ... 125
btumon2(chan) ..... ... Start/stop monitoring chan ... 127
btumxs (bdrate) ...... . Set maximum data speed ...... . 128
btuoba(chan) ...... ... Output buffer bytes avail .... 130

btuoes (chan,onoff) ... Enable Output-Empty status ... 131
btuolk(chan,onoff) ... Lock out or resume output .... 132
btupbc(chan,pausch) .. Character to initiate pause .. 133

btupmt (chan,pmchar) .. Set prompt character ......... 134
bturep(chan,statid) .. Report channel statistics .... 135
bturst(chan) ......... Reset a channel .....ccceveune 136
bturti(n,rtirou) ..... Define real-time routine ..... 140
btuscnl): wsss spvas s Scan chamnels service need ... 141
btuscr (chan,softcr) .. Set soft-CR (for wordwrap) ... 143
btusdf (chan,n,chtype) Super-define channels ........ 144
btuset (chan,statid) .. Set and report channel stats 147
btusiz(nchan,isz,0sz) Amount of memory needed ...... 149
btusts(chan) il TR status of a channel .......... 153
= QUIET, NO’I‘HING SPECIAL TO REPORT .vveessnnece o 353

l = RING-INDICATE OR LOST-CARRIER (BREAK) ....cu.. 154

2 = COMMAND EXECUTION COMPLETED OK (XECOM) ....... 154

3 = CR-TERMINATED INPUT STRING AVAILABLE ........ . 154

4 = BYTE-COUNT-TRIGGERED INPUT DATA AVAILABLE .... 154

5 = QUTPUT BUFFER EMPTY ....cccveenennas e e 155

6 OUTPUT ABORTED BY USER .....cvc0vn- Sy 1 . 155

11 = LOST CARRIER (HAYES HARDWARE) ....cecc..- ve.. 155

12 = COMMAND EXECUTION COMPLETED OK (HAYES, UART) 155

13 = INVALID COMMAND BYTE (HAYES) ...cccevcenaccns 155

21 = X.25 INCOMING CLEAR PACKET (END OF SESSION) 156

22 = X.25 COMMAND OR PAUSE COMPLETED ...... 5 PElEE 156

23 = X.25 INVALID BTUCMD() COMMAND CODE .....con.- 156

24 = X.25 INCOMING X.29 STRING +.vvoveeanannocns ... 156

31 = LAN SPX CONNECTION TERMINATED BY OTHER SIDE 156

32 = LAN PAUSE COMMAND COMPLETED ....cveeen-- ohans BT

GSBL-v



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

btusts(chan) (continued)
33 = LAN INVALID BTUCMD() COMMAND .........
34 = LAN SPX INCOMING CONNECTION ESTABLISHED .....
35 = LAN SPX OUTGOING CONNECTION ESTABLISHED .....
36 = LAN SPX TERMINATION COMPLETE BY THIS SIDE ...
37 = LAN RECEIVER ERROR +.vvvevvnnnnnnnenn RO
38 = LAN RECEIVED UNKNOWN OR UNEXPECTED PACKET ...
39 = LAN CONNECTION ERROR ..... e T e e .
40 = LAN GTC INPUT MODE: LOCKED OUT +uvveveerenns
41 = LAN GTC INPUT MODE: BINARY ..uvvvevenncnnnns
42 = LAN GIC INPUT MODE: ASCII, NO ECHO ...ivvvnnn
43 = LAN GTC INPUT MODE: ASCII, WITH ECHO ...... %
44 = LAN GTC INPUT MODE: ASCII, H/ECHO AND WRAP
49 (ASCII 1) = DIMF 1 SENSED ......... saessesn e
63 (ASCII ?) = INVALID COMMAND BYTE (XECOM) ......
65 (ASCII A) = ABORTED COMMAND PREMATURELY .......
66 (ASCII B) = BUSY SIGNAL SENSED +.ovvvvenennns &t
68 (ASCII D) = DIAL TONE SENSED ..... VR SRR e
70 (ASCII F) = FAILED FOR OTHER REASONS ..........
73 (ASCII I) = INAPPROPRIATE COMMAND ...ovevevennnn
77 (ASCII M) = MODEM CARRIER SENSED +uuvevevneesss
82 (ASCII R) = RINGING SENSED, BUT NO ANSKER .....
84 (ASCII T) = TIMEOUT (SILENCE SENSED) vcvvvvnnnn
86 (ASCII V) = VOICE SENSED +.'vv'vevvennennnn.
118 (ASCII v) = VOICE SENSED (BY "A COMMAND)..... .
250 = TRANSMISSION ERROR O
251 = DATA INPUT CIRCULAR-BUFFER OVERFLOW ........
252 = ECHO OUTPUT CIRCULAR-BUFFER OVERFLOW ......
253 = DATA OUTPUT CIRCULAR-BUFFER OVERFLOW .......
254 = STATUS INPUT CIRCULAR-BUFFER OVERFLOW ..... N
255 = COMMAND OUTPUT CIRCULAR-BUFFER OVERFLOW ....
=10 = CHANNEL NOT DEFINED ....veovun. s e ST weie
-11 = CHANNEL NUMBER OUT OF RANGCE ...... Wh e e msmie

btutrg(chan,nbyt) ...... Set input byte count trigger

btutrm(chan,crchar)

. Set input line terminator ..

btutrs(chan,onoff) ..... Report user abort of output
btutru(chan,trunch) .... Set output-abort character

btutsw(chan,width) ..... Set terminal screen width ..
btuudf(schan,n) ........ Un-define channels .........
btuusp(chan,oncff) ..... Special UART polling method

btux29(chan,nbyt,datstg) Transmit an X.29 string ....
btuxct (chan,nbyt,datstg) Transmit to chan (byte cnt)

btuxlt (oldchr,newchr)
btuxmn(chan,datstg)

btuxmt (chan,datstg) ....
btuxnf (chan, xon, xoff)

GSBL-vi

. Set XON/XOFF characters

.. Set input translation table
. Non-clearable ASCII transmit
Transmit to chan (ASCIIZ) ..

157
157
157
157
158
158
158
159
159
159
160
160
161
161
161
161
162
162
162
162
163
163
163
163
164
164

. 164

165

165
165
166

167
169
170
171
172
176
177

182
183
187
189
192



CONTENTS

5.0 HAYES AND XECOM PROGRAMMING EXAMPLES ........... eeee. 194

5.1 Teleconferencing Example, HAYES Hardware Version 197
5.2 Teleconferencing Example, XECOM Hardware Version 207

6.0 LAN PROGRAMMING ..... WS e S R S s DA
6.1 LAN Channel State-Machines .......... EE s 214
6.2 The SPX Channel State-Machine ......cccceceecens 215
6.3 IPX Virtual Circuits in Raw Packet Mode ........ 219
6.4 Galacticomm Terminal Configuration (GTC) ..... ww 223
7.0 X.25 PROGRAMMING ..:evecssnns B T R cssasanan 226
7.1 Handling an Incoming Call .......... i e 227
7.2 Making an Outgoing Call ........... SR el R R 227
INDEX suens smwmmns N e S STl FeEE i e e 229

LIST OF FIGURES

Figure 2-1: Galacticomm Software Breakthrough

Block Diagram ...eoeeesoenssscnnarnes e — 4
Figure 2-2: Hardware Archltectures Supported S S S 6
Figure 2-3: Summary of Hardware Differences

Between Hayes and Xecom Hardware ............ 8
Figure 2-4: Comparison of ASCII to Binary Input Modes ... 16
Figure 4-1: Summary of Hayes and Xecom Commands ..... gaes OB
Figure 4-2: Summary of Status Codes ..... F— 2 102

Figure 5-1: Teleconferencing Example, HAYES hardware .... 196
Figure 5-2: Teleconferencing Example, XECOM hardware .... 206

Figure 6-1: IPX Virtual Raw Packet Format ............... 219

GSBL-vii



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

GSBL-viii



1.0 INTRODUCTION

The Galacticomm Software Breakthrough Library manages a wide
variety of communications hardware, supporting up to 256 users
simultaneously on a fast IBM PC/AT/386/486 class of computer.

The GSBL is our communications interface for The Major BBS
Bulletin Board System. One strategy of the GSBL is to

isolate low-level communications considerations from the
design of The Major BBS. Similarly, specific features and
considerations of bulletin boards are isolated from the design
of the GSBL.

This manual will describe the GSBL as a general purpose
communications tool. Your practical interaction with the GSBL
is as a library of C-language callable subroutines. So most
of this manual is the detailed description of these routines.

To efficiently handle a very large number of channels on a
personal computer, we've had to make some breakthroughs in the
hardware as well the software. For example, the GalactiBox
can hold sixteen inexpensive internal modems, all configured
at the same COM port, without interrupt conflicts. Or a
GalactiBoard can provide eight serial ports at the same COM
port. And the original Galacticomm Breakthrough cards have
many modems on one card but only use up two of the standard
I/0 addresses.

GSBL-1



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

1.1 Galacticomm Hardware

Here are some examples if I/0 hardware available from
Galacticomm. Call sales at 1-800-328-1128 for the latest
products and prices.

Part Description

GalactiBox 16-slot COM expander

GalactiBoard 8-port serial card

Internal 2400 Internal 300-2400 bps modem

Internal 2400 MNP Above with correction and compression
Internal 14400 MNP Internal 300-14400 bps modem, etc.
External 2400 External 300-2400 bps modem

External 2400 MNP Above with correction and compression
External 14400 MNP External 300-14400 bps modem, etc.

PC XNet X.25 interface subsystem

Model 2408 8-modem card, 300-2400 bps

Model 16 16-modem card, 300-1200 bps

Model 4 4-modem card, 300-1200 bps

The GalactiBox can expand the I/0 capabilities of your PC bus
with modems, serial ports or other devices. We can ship you
the GalactiBox full of any of the above internal modems in any
combination.

The GalactiBoard has eight RS-232-C serial channels with
16550-type UARTS for direct connection to devices like the
above external modems, local terminals, printers, plotters,
and so forth. 30" cabling is included.

The PC XNWet card gives the GSBL the capability to support a
service on a packet switching network like Sprintnet,
CompuServe, or BT Tymnet.

With the Advanced LAN Option, you can also support
communications across a Novell Local Area Network, based on
the Netware IPX communications standard.

The Model 2408 modem card offers you the most compact

2400 bps multiple-modem solution. Each individual

modem has its own microprocessor, and connects directly to
your telephone company, using everyday "RJ-11" telephone jacks.

GSBL-2



SECTION 1.0 INTRODUCTION

GSBL-3



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

APPLICATION THE GALACTICOMM PHONE REMOTE
SOFTWARE SOFTWARE BREAKTHROUGH COMPANIES USER SYSTEM
(plus interface hardware) OR NETWORKS (example)
o ) NN

=%

| =
btucmd() | COMMAND

SIMULATED
btumks() | USER
KEYSTROKES

btuinp()

btuxmit()

btumds(

btusts()

GSBL-4

'EJFFER [H

J RECEIVE BYIELL |
| BUFFER | ] " | nTeRFACE
HARDWARE |

e LA|
TRANSMIT [21-BYTE
BUFFER ||| T_FAF0 ]

MONITORED
) a————————  USER |
| DISPLAY | O
¥ == Ay |
. | smatus
T e

Galacticomm Software Breakthrough Block Diagram

0 || Modem, ||| A | .
£R || sEeri; Sé“n —/INTERFAGE —{ TERMINAL ~—{ USE )
T x250r ||| N



2.0 ARCHITECTURE

The Galacticomm Software Breakthrough Library is a multi-user
communications tool. This is different from multi-tasking.
Our approach is to have a single DOS program take direct
control of all communication ports -- not through DOS, not
through BIOS (neither of these was developed with much regard
for performance). The program must be expressly designed for
multi-user purposes. With these principles, it is possible to
serve a large number of users with an inexpensive computer
such as the PC/XT/AT or compatible. This is what The Major
BBS does. See page 196 and page 206 for examples of a very
basic multi-user teleconferencing program that uses the GSBL
routines.

To help you get a grasp of the architecture of the Galacticomm

Software Breakthrough Library, figure 2-1 shows the structure
and flow of data through these buffers:

Buffers Implemented for Each Channel

Access via

Buffer routine Direction of access
Status btusts() input
Command btuemd () output
Receiver btuinp() / btuict() input
Transmitter btuxmt () / btuxct() output
Echo (transparent) T

The following buffers are only implemented for two channels —-
the "monitored” channels -- as selected by btumon()
(page 125) and btumon2() (page 127).

Buffers Implemented for only One Channel at a Time

Access via

Buffer routine Direction of access
Monitored display btumds () input
Simulated keystrokes  btumks() output
Monitored display #2  btumds2() input
Sim. keystrokes #2 btumks2() output

GSBL-5



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

HAYES CATEGORY HARDWARE

Computer Phone Lines Camputer i Computer Phone Lines
| or GalactiBox
— Pamallel —____ Serial e — Paraltel —— —
L bus, ‘ ElA-232 | | s L
CPU ¥ UART | MODEM + | cPU K UART |:-’_" MODEM
N e B Ay

Hayes-Compatible
Internal Modem

Serial Part
or GalactiBoard

== . — S SE—

UART CATEGORY HARDWARE XECOM CATEGORY HARDWARE

EiA-232 Computer | Phane Lines

— Parall l B,
P N A
‘ CPU < UART —— CPU F_—* UART

Serial XECOM Modem
or GalactiBoard ‘

MODEM

Computer Leased

—  _ Panliel . Paralle N
[ Liﬂjs\ —L [ ] [ al‘m” I| ki ‘ Nowel \ =
CPU " PC XNet | SYNCHRONOUS cPU KT Netware
| [ MODEM v w Local Are
L 1 | AnAPTERr pek iy

= | \\ //

Figure 2-2: Hardware Architectures Supported

GSBL-6



SECTION 2.0 ARCHITECTURE

2.1 Hardware Categories

The Galacticomm Software Breakthrough Library supports
multiple users on IBM PC/XT/AT and compatible computers
using several different kinds of hardware, which fall into
these three categories:

Hardware

Category Description Examples

HAYES "Hayes-protocol" modems Galacticomm Model 2408,
GalactiBox with inter-
nal modems installed,
8*Serial Card with ex-
ternal Hayes-compatible
modems

XECOM "Xecom-protocol" modems Galacticomm Model 16,
or Model 4

UART RS-232 serial ports 8*Serial Card, IBM

Asynchronous adapter

Other hardware and interfaces are supported as part of special
option packages:

X.25 Packet switching networks PC XNet Card
LAN Direct & virtual circuits Novell Local Area
Networks

HAYES Cateqgory Hardware: Hayes-Protocol Modems

In this category of hardware, the computer is connected in
series with three devices: an RS-232-C serial interface
device (called a UART); a Hayes-compatible modem; and a
telephone line. The two functions of controlling the modem,
and communicating through it, are handled using the same
signals. This is accomplished using two modes of operation:
the modem is either in command mode or in online mode.

GSBL-7



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

XECOM Category Hardware

HAYES Category Hardware

of modem
(bturst () return
code meaning OK)

Baud rates 300, 1200 any rate from
available 75 to 38,400
Phone ringing Status 1 Status 3 input string:
(see btusta()) "RING"
Carrier detect Status 2 Status 3 input string:
(results of "CONNECT" for 300 baud
btuemd {chan, "A"})) "CONNECT 1200" for 1200 baud
"CONNECT 2400" for 2400 baud
etc...
Status 12
Lost carrier Status 1 Status 11
{see btusts())
Buay Status 66 ('B’) Status 3 input string:
"BUSY" or "NO CARRIER"
Timeout waiting Status 84 ('T’) Status 3 input string:
for dial tone "NO DIALTORE" or "NO CARRIER"
Timeout waiting Status 84 (‘T‘) Status 3 input string:
for carrier "NO ANSWER" or "NO CARRIER"
Command complete Status 2 Status 12
succesafully Status 3 input string:
(see btuemd()) "OK" (in most cases)
Successful Reset 0 1

Short pause
btuemd("..p..")
and Long pause
btucmd ("..P..")
within a string
of commands

Takes place AFTER
the commands
preceding it

Takes place BEFORE all other
commands in the string

Commands not G5 g
supported on

Hayes hardware
(see btucmd())

Frequency monitor
set 110 baud speed
Analog loopback,
originate mode
Analog loopback,
answer mode

Hold

Identify versicn
Identify revision
Line analyze
{"ell™) 1200 baud
error statistics

{these commands
will generate a
status code 13 with
Hayes hardware)

Commands sup-
ported only on
Hayes hardware
(see btucmd ()}

(this command will
generate a status code
63 (?)
category hardware)

on XECOM

"F set apeed to 2400 baud

Figure 2-3

GSBL-8

: Summary of the Differences
Between Hayes and Xecom Hardware




SECTION 2.0 ARCHITECTURE

Most modems in use today, in the IBM PC family of computers,
support the command protocol originated by Hayes Microcomputer
Products, Inc., Atlanta, Georgia, for their Smartmodem series.
The Galacticomm Software Breakthrough Library will work with
modems that are compatible with the Hayes Smartmodem series of
modems .

When Hayes-compatible modems are in the command mode, you
instruct them to perform tasks by transmitting to them a
string of characters of the form:

AT<command><parameters><CR>

See your modem manual for a complete description of command
and online modes, and the entire "AT" command set.

1f you have a Hayes-compatible modem, and have connected it to
your PC using a serial port that is equivalent to IBM's
Asynchronous Communications Adapter (usually identified as
"COML:" or "COM2:" by the operating system), then you fit into
the "HAYES" hardware category for the purposes of this manual.
Many companies now make "internal" modems -- a single card,
containing both a Hayes-compatible modem and a UART, that is
plugged into the internal bus of the PC, and connected
directly to the telephone lines. This architecture also fits
into the "HAYES" category.

The Galacticomm Breakthrough Model 2408 is a special case of
the "HAYES" category, in which 8 complete modems (plus an
8-channel UART) have been implemented on a single card that
plugs into your IBM PC/XT/AT or compatible. The
teleconferencing example program on page 196 was written for
the Model 2408 card.

All other hardware in the "HAYES" category (besides the Model
2408) must include the 8250-type UART required by the "UART"
category of hardware. More on that in the upcoming discussion
of RS-232 serial ports.

XECOM Cateqory Hardware: Xecom-Protocol Modems

The Galacticomm Breakthrough card Model 16 and Model 4
contain, respectively, 16 and 4 complete modems on a single
card for the IBM PC/XT/AT or compatible. The computer talks

GSBL-9



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

to each of these modems over an 8-bit parallel bus. The
functions of command and communication are not implemented
over the same signals, but take four distinct paths: command,
status, transmit and receive. This method was developed by
Xecom Inc., Milpitas, California, for their compact MOSART
300/1200 baud modems.

Although the Xecom protocol may be a more efficient
arrangement than the Hayes protocol, the Xecom technique is
not in widespread use as is the protocol developed by Hayes.
The syntax of commands on a Xecom-protocol modem is completely
different from that on a Hayes-protocol modem.

The Galacticomm Software Breakthrough Library attempts to make
those differences of as little concern as possible to the
systems design, but some considerations must be made,
particularly in the following areas:

Areas of Difference between Hayes and Xecom Protocols
Starting an ocutgoing call

Answering an incoming call

Sensing loss of carrier (user has hung up)

Certain test and measurement functions

Figure 2-3 (page 8) summarizes the differences between the
Hayes and Xecom protocols. The teleconferencing example
program on page 206 works on Xecom-compatible hardware.

UART Categqory Hardware: RS-232 Serial Ports

You could also use the Galacticomm Software Breakthrough
Library to talk directly with any RS-232 compatible device,
such as a terminal, printer, plotter, another computer, or
many other types of devices.

In fact, Hayes-compatible modems are just one type of device
that you may control using an RS-232 serial port, except that
the Galacticomm Software Breakthrough Library provides
extensive support for these particular devices (see the
Hayes-protocol modem discussion, above).

You will need an interface card in your PC, equivalent to the
IBM Asynchronous Communications Adapter. Most serial cards
for the IBM PC family meet this requirement. They are
designed to support what the operating system identifies as
"COM1:" or "COM2:" (although the Software Breakthrough does
not use DOS or BIOS to interface with these ports). One thing

GSBL-10



SECTION 2.0 ARCHITECTURE

that the card must have is an integrated circuit called a UART
of the 8250 family, which includes model numbers like 16450
and 16550. The 16550 model UART is highly desirable for its
character buffering capability. The GalactiBoard 8-port
serial card can supply you with a channel group of eight 16550
UARTS.

Novell Netware LAN Access

You can use the GSBL to interface to other programs across a
Novell Local Area Network.

WARNING: Direct communication with LAN channels may
be dangerous. Some sockets are reserved for file
servers or other system functions. Be sure that

the software always uses appropriate socket numbers
(page 212).

The standard GSBL comes with the capability to handle IPX
Direct circuits. The Advanced LAN Option can also handle IPX
Virtual and SPX circuits.

IPX Direct Circuits are relatively hard-wired
connections between two machines on the network,
or multi-network internet. Each party must know
ahead of time what network address to connect to.

IPX Virtual Circuits are connections that can be
easily made and remade between machines on a
network or internet. Also when no connection is
specified, a "raw packet mode" reports packets
received from any other machine, and can be used
to transmit packets to any other machine.

SPX Circuits are higher-level connections with
automatic error correction. Also under SPX,
"sessions" are established and terminated between
parties, which among other things allows either
party to detect the presence or absence of the
other party.

The Advanced LAN Option also supports GTC (Galacticomm

Terminal Configuration) for IPX Direct, IPX Virtual, and SPX
channels. This allows, for example, a terminal program to

GSBL-11



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

preprocess input for a BBS, one line at a time. That way
every single keystroke doesn’t get transmitted over the LAN as
a separate packet.

See page 212 for more on programming with the GSBL/X25
communications interface.

X.25 Packet Switching Network Access

"X.25" is a way for computers to talk to other computers over
a packet switching network. A packet switching network is
very much like a local or long-distance telephone network, but
with a different emphasis. A telephone network is called a
"circuit switching" network. During a phone call, one handset
is theoretically in continuous electrical contact with another
handset that could be anywhere else in the world.

On a packet switching network, calls are also begun and ended
-- that's called switching. But during a call, the network
does not need to maintain a connection during pauses in the
data exchange. Neither is it a big problem if the network
handles occasional peaks in traffic by slowing down all
traffic just a little. However the packet switching network
is exchanging digital data and must detect and correct all
transmission errors. Because of these differences, a

packet switching network can be more economical for data
exchange than a circuit switching network.

CCITT recommendation X.25 is titled "Interface between Data
Terminal Equipment (DTE) and Data Circuit Terminating
Equipment (DCE) for terminals operating in the packet mode and
connected to public data networks by dedicated circuit". It
was written by the International Telephone and Telegraph
Consultative Committee (French abbreviation CCITT) in Geneva
Switzerland in 1976 and is amended every four years (the 1988
assembly was in Melbourne, Australia). For more information,
you may want to read:

"Technical Aspects of Data Communication", by John
E. McNamara, published 1988 by Digital Equipment
Corporation, chapter 24: Packet Switching

"X.25 Explained", by R.J. Deasington, published
1988 by Ellis Horwood Books

See page 226 for more on programming with the GSBL/X25
communications interface.

GSBL-12



S8ECTION 2.0 ARCHITECTURE

Throughout the detailed sections of this manual, you will see
little annotations like:

Hayes-specific discussion . 5
Concerning the Hayes-compatible
modems, or the Galacticomm
Breakthrough Model 2408.

to point out some information that is specific to Hayes
compatible hardware, or:

Xecom-specific discussion .
Concerning the Galacticomm
Breakthrough Models 16 and 4.

to point out some information that applies only when using
Xecom-compatible hardware, or:

Discussion specific to RS-232
serial ports, such as the IBM
Asynchronous Communications
Adapter, or most any serial
card for the IBM PC family.

Frequently, information will apply to both the HAYES and to
the UART categories, in which case you will see:

Discussion which applies both to Hayes
hardware, and to non-modem 8250
hardware .

These are seen together when discussing ports that use an
"8250"-type UART.

GSBL-13



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Some discussions only apply when certain options or software
licenses are obtained:

This discussion applies only to the
Advanced LAN Option of the GSBL,
"GSBL/LAN"

ig?2!iuﬁ

This discussion applies only to the
GSBL with the X.25 Software Option,
"GSBL/X25"

In some places in this manual, LAN access is discussed
outside these marked-off regions. 1In this case, the
discussion applies to the standard GSBL, without the Advanced
LAN Option.

All variables and functions are available in all variations of
the GSBL. For example, the btux29() function (page -2) is
useful only with the X.25 Software Option. But even without
that option, there is a btux29() function that you can call
(it does nothing). This allows you to write C code that is
compatible with all variations of the GSBL, and not get any
undefined symbols when you go to link. See the variables
btulan (page -2) and btux25 (page -2) for ways your software
can determine what variation of the GSBL it is linked with.

GSBL-14



SECTION 2.0 ARCHITECTURE

GSBL-15



THE GALACTICOMM

SOFTWARE BREAKTHROUGH LIBRARY

ASCII Input Mode

Binary Input Mode

How to select the
input mode:

Input unit:

When is an input
unit complete?

Status generated to
indicate that the
input unit has been
received:

How to get the
received input unit
out of the receive
buffer:

Return code if no
data is available:

Return code if some,
but not enough, data
is available:

How many bytes were
transferred into
inbuff, in either of
the above 2 cases?

"inbuff" buffer:

Return code if a complete
input unit is available
(and has been moved to
the "inbuff” buffer):

Format of data in the

btutrg(chan, 0)

One CR-terminated line

When a carriage return
has been received

btuinp(chan, inbuff)

number

of bytes

received
(less the CR)

strlen(inbuff)

One CR-terminated
line, with the CR
replaced by a O-byte

btutrg(chan, NBYT)

NBYT bytes

When NBYT bytes have
been received

btuict (chan, inbuff)

=P

NBYT

global variable
"ietact”

NBYT bytes

Figure 2-4:

GSBL-16

Comparison of ASCII to Binary Input Modes




SECTION 2.0 ARCHITECTURE

2.2 ASCII versus Binary Input Modes

There are two methods for receiving data using the Galacticomm
Software Breakthrough Library. ASCII method means that you
are expecting text from the user -- information which consists
mainly of "printable characters" (letters, numbers and
symbols). In this case, certain "control characters" are
defined, and will be handled specially by the GSBL when they
are received from the user. For example, <CR> (carriage
return) terminates each input line from a user. Also, a user
can use the backspace key to delete characters on his input
line. You would use the ASCII method for menus, or
question-and-answer sessions with a user.

Binary input mode means that there are no special characters
or translations. You might use this mode to download or
upload data files to/from a user, using a transparent binary
protocol such as XMODEM.

In ASCII input mode, the following characters are treated
specially when received:

ASCII Mode -- Special Input Characters

ASCII
Hex Dec Symbol Function Assignment
00H 0 NUL (ignored)
08H 8 BS backspace btubse(), page 40
OpDH 13 CR carriage return btutrm(), page 169
OFH 15 sI output-abort btutru(), page 171
11H 19 XON output-resume btuxnf(), page 192
13 21 XOFF output-pause btuxnf(), page 192
7FH 127 DEL backspace btuxlt(), page 183

These GSBL routines may be used to assign the same functions
to other characters. The default characters are shown here.

GSBL-17



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

There are other functions that only apply to ASCII input mode:

ASCII Mode -- Special Functions

Routine that controls

Function the function
Input translation btuxlt(), page 183
Custom handling btuchi(), page 47
Input interception btuchi(), page 47

Idle receiver handling btuche(), page 45
Input line length limit btumil(), page 121

Input word-wrap btumil(), page 121
Automatic linefeed btulfd(), page 114
Echo on/off btuech(), page 86

See page 48 for the exact sequence of input processing in
the ASCII mode.

ASCII input is achieved using the GSBL routine btuinp()

(page 108). This routine will extract a string of characters
from the receive buffer of a channel. The input string ends
with a <CR>, but when read by btuinp(), the <CR> is replaced
with a O-byte terminator. A status 3 is generated (refer to
btusts(), page 153) when a complete line has been received,
and btuinp() is used to retrieve that line.

Binary method means that none of the input characters listed
above are treated specially, nor does any kind of character
translation take place. Binary input is achieved using the
GSBL routines btutrg() (page 167) and btuict() (page 105).
None of the special handling shown in the above two tables
occurs when these routines are used to receive data.

btutrg() chooses between Binary and ASCII input modes. With a
second parameter of zero, ASCII mode is chosen. When the
second parameter is greater than zero, Binary mode is chosen,
and that nonzero parameter is the number of bytes you want to
receive at a time, in one block. A status 4 is generated (see
btusts(), page 153) when a complete block has been received,
and btuict() is used to retrieve that block. Figure 2-4

(page 16) illustrates the differences between the ASCII and
Binary input methods.

GSBL-18



SECTION 2.0 ARCHITECTURE

2.3 ASCII versus Binary Output Modes

The ASCII output mode includes such features as:

Automatically appending linefeeds to carriage returns
Output word-wrap and paragraph reflow

Suspending output while input is in-progress
ANSI-graphics discrimination

Output "abort" character

Single-character prompts

Oo0O0OO0O0O0

This mode would be used during "conversational" interaction
with a user -- asking questions, parsing replies, accepting
commands, reporting results.

When the GSBL transmits in Binary output mode, no character is
treated differently from any other. This mode would be used
during a transparent computer-to- computer interchange, such
as an XMODEM protocol upload or download.

The selection of ASCII versus Binary output modes is as
follows:

Use btuxmt() for ASCII output (refer to page 189)
Use btuxct() for Binary output (refer to page 182)

NOTE: The actual transition from Binary to ASCII output modes
occurs only when the output buffer empties completely. For
example:

btuxct(chan,1,"\7");
btuxnt (chan, "WARNING\C");

This will probably transmit the "WARNING\r" message in the
binary mode, since the buffer will probably not be empty when
that message is stuffed into it. Either a status 5 (page 155)
or a btuoba(chan) == outsiz-1 condition is necessary to be
absolutely sure that a subsequent btuxmt() will transmit in
the ASCII mode.

GSBL-19



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

The following routines are associated with ASCII output and
affect the operation of btuxmt():

btutsw()
btuhcr ()
btuscr ()
btulfd()
btutru()
btuxnf ()
btupmt ()
btucmd( )

Output word wrap

Hard carriage-returns

Soft carriage-returns

Linefeeds appended to carriage returns
Output abort character

XON/XOFF handshaking

Prompt characters

Enable or disable ANSI graphics with
the "[" and "]" commands

Most of the processing for these features is performed by
btuxmt() -- and not by the interrupt-service routines, thereby
increasing channel throughput. None of these features is in
effect when you use btuxct().

GSBL-20



3.0 GLOBAL VARIABLES

To use any of the following variables in a program, you should
declare them in the manner shown under DECLARATION in the
variable declaration section of your C-language program. The
declaration must appear before any use of the variable. The
header file BRKTHU.H includes all of these declarations.

LIBRARY REFERENCE GUIDE GSBL-21



variable Dtudtr

VARIABLE NAME

btudtr -- DTR level after channel reset

DECLARATION
extern int btudtr; what to do after bturst():
0 = lower DTR for 2 seconds
and then raise
1 = leave DTR high always
DESCRIPTION

This command affects all channels that are based on
the 8250-type UART. It specifies what happens after
the channels are reset with bturst() (page 136).
After reset, the DIR signal is set to this value for
2 seconds, then it is set high (active).

To vary your handling of individual ports, you
could set btudtr just before every call to bturst().

GSBL-22 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable btuhrt

VARIABLE NAME

btuhrt -- High-rate 65536 Hz counter
DECLARATION

extern unsigned long btuhrt;
DESCRIPTION

This 32-bit integer increments at approximately
65536 Hertz. You’ll probably make the most use out
of this by taking two samples and subtracting them
-- the unsigned difference reflects the time between
the samples. This is the same kind of thing that
ticker does (page 33), only faster.

You can use the upper 16 bits of btuhrt as a 1 Hz
counter.

Actually btuhrt only simulates this rate. It
really changes at a rate controlled by btumxs()
(page 128). btuhrt increments in spurts, in a
manner calculated to keep btuhrt looking like a
65536 Hertz counter. The point is that you may not
be able to use btuhrt to measure time too finely.

If btumxs(2400) is in effect, for example, then
about 290 times a second, btuhrt increases by
approximately 226 (226 x 290 = 65540, which is about
65536). A new btuhrt value will be available only
290 times a second, not 65536 times a second. So
you couldn’t measure 1-millisecond intervals.

CAUTIONS

when reading this variable, you should temporarily
disable interrupts to avoid skew between the 16-bit
halves of the value. For example, we use this code
in The Major BBS:

unsigned long
hrtval(void)
<

unsigned long hrtsmp;

dsairp();
hrtsmp=btuhrt;
enairp();
return(hrtsmp);

LIBRARY REFERENCE GUIDE GSBL-23



variable Btulan

VARIABLE NAME
btulan -- LAN capability and status flags
DECLARATION

extern int btulan;

#define BTLIPXD 0x0001 I* bit 0: IPX Direct circuits supported w7

#define BTLIPXV 0x0002 ¥ bit 1: IPX Virtual circuits supported 1 4

#define BTLSPX  0x0004 fad bit 2: SPX circuits supported */

#define BTLI7A  0x0100 F i bit 8: IPX driver is loaded *y

#define BTLSPXL 0x0200 ™ bit 9: SPX is loaded wy
DESCRIPTION

Your C program could use btulan to make a report on
these conditions:

printf("Your GSBL supports:\n");
if (btulan&BTLIPXD) {
printf(" IPX Direct Circuit channels\n");

2
if (btulam@BTLIPXV) (
printf(" IPX Virtual Circuit channels\n");

b
if (btulan&BTLSPX) {
printf(" SPX channels\n");

b
if ((btulan&(BTLIPXD+BTLIPXV+BTLSPX)) == 0) {
printf(" no LAN access at all\n");

>
printf("The IPX driver %s been loaded at interrupt vector hex 7A\n",

btulan&BTLI7A ? "has™ : "has not");
printf("sPX %s installed on this node\n",
btulan&BTLSPXL ? "is" : "is not");

IPX Direct Circuits are supported by all versions of
the GSBL.

IPX Virtual and SPX Circuits are only supported by
the Advanced LAN Option of the GSBL, "GSBL/LAN".

CAUTIONS

Note that the first three bits are always available
when your program is running. The last two are
available only after calling btuitz() and before
calling btuend().

The above program must of course include the header

file BRKTHU.H, and be run between calls to btuitz()
and btuend().

GSBL-24 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable btUurno

VARIABLE NAME

bturno —- registration number
DECLARATION

extern char bturno(]; /* 8 digits plus a <NUL> */
DESCRIPTION

This character array contains the 8-character software
registration number issued to you when you purchased
the Galacticomm Software Breakthrough Library. It
consists of 8 ASCII digits followed by an ASCII

¢NUL> (0-byte) terminator.

CAUTIONS

Don't let YOUR copy of the Galacticomm Software
Breakthrough Library fall into unscrupulous hands!

Unauthorized copying of this software or
documentation is a violation of federal law,
specifically, Title 17, USC Section 506. Violators
may be subject to a $25,000 fine, or imprisonment,
or both.

LIBRARY REFERENCE GUIDE GSBL-25



variable Dtusrs

VARIABLE NAME

btusrs -- number of users licensed
DECLARATION

extern int btusrs;
DESCRIPTION

This variable is the number of users licensed for
your copy of the GSBL.

In The Major BBS, this variable is used to display
the version code suffix (e.g. "-32") in the "BBS UP"
audit trail message.

Channels defined beyond this number will always be
"non-hardware" channels (bturst() will always return
-10, see page 136). Non-hardware channels may be
useful in simulating a user channel. See about

the monitor feature on page 125 (and page 127).

GSBL-26 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable Btuver

VARIABLE NAME
btuver -- GSBL version code

DECLARATION
extern char btuver([];

DESCRIPTION
This string is the software revision for the GSBL.
You could use it to display the version somewhere:

printf("Based on GSBL-%s for %d users",btuver,btusrs);

or, you could use this variable to do different
things based on the version code of the GSBL, for
example:

if (stremp(btuver,"J") == 0) {
jspecific();

else if (strcmp(btuver,"K") = 0) {
kspecific();
}

else {
allelse();
}

LIBRARY REFERENCE GUIDE GSBL-27



variable biux25

VARIABLE NAME

btux25 -- Whether or not GSBL supports X.25

DECLARATION
extern int btux25; 0=GSBL does not support X.25
1=GSBL supports X.25
DESCRIPTION

This global variable can be used to take special
action based on whether the GSBL supports X.25 or
not. For example, you might code your program to
generate an error message when it is configured to
talk to X.25 channels but the GSBL does not support
them. The return value of btusdf() for channel type
4 (page 144) may be used in the same way.

CAUTIONS

The value of btux25 is not defined until after you
call btuitz().

GSBL-28 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable ictact

VARIABLE NAME

jctact —- Actual number of bytes read by btuict()
DECLARATION

extern unsigned ictact;
DESCRIPTION

®hen you use btuict() (page 105) to retrieve data
bytes from the input buffer, as many as are
available are copied, up to the trigger count (the
trigger count is set by btutrg(), page 167). ¥hen
less than the trigger count of bytes are available,
the bytes are transferred anyway, but they are not
taken out of the input buffer. This is when
btuict() returns -2 (indicating insufficient bytes
are available). In this situation, the global
variable ictact is the way you have of determining
how many bytes were copied into your buffer.

LIBRARY REFERENCE GUIDE GSBL-29



variable l@anrev

VARIABLE NAME

lanrev -- LAN SPX revision
DECLARATION

extern char lanrev([2];

DESCRIPTION

This array contains the SPX version numbers, minor
version first:

printf("SPX version %d.%d\n", lanrev[1], lanrev[01);

CAUTIONS

Without the Advanced LAN Option, the version is 0.0.

This array is only available after btuitz() has been
called and only if SPX is available.

GSBL-30 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable laNnsca

VARIABLE NAME

lansca -- LAN SPX connections available

DECLARATICN

extern int lansca;

DESCRIPTION

This is the number of SPX sessions that your program
can support. To increase this number, you might be
able to increase the "SPX CONNECTIONS" parameter in
your Netware SHELL.CFG file, as in:

SPX CONNECTIONS = 100

CAUTIONS

Hithout the Advanced LAN Option, lansca is always 0.

This value is only available after btuitz() has been
called.

LIBRARY REFERENCE GUIDE GSBL-31



variable Iansop

VARIABLE NAME
lansop -- LAN socket opened by btusdf()

DECLARATION
extern int lansop;

DESCRIPTION
If you use btusdf() to define a Netware LAN channel
with a socket of 0, then IPX will assign an unopened
socket for you. The socket it picks is then

retrievable from this lansop variable.

The socket number is in convenient "lo-hi" byte
order.

CAUTIONS
lansop is only defined for hardware channels (i.e.

bturst() returns non-negative), and only after
calling btusdf().

GSBL-32 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable ticker

VARIABLE NAME
ticker -- second timer

DECLARATION

extern unsigned ticker; /* 0 to 65535, and back again */

DESCRIPTION

Every second, the contents in this variable
increments. After it reaches 65535, it goes back to
0 and starts over again. According to the
properties of 16-bit unsigned arithmetic, you can
sample the value of "ticker" at two different times,
and the difference between the values will reflect
the time between the samplings, as long as that time
is less than 65535 seconds (about 18 hours).

If you need more resolution in your time
measurement, use btuhrt (page 23).

CAUTIONS
This variable increments at a rate very close

to 1 Hz (once a second), but -- don't set your
watch by it.

LIBRARY REFERENCE GUIDE GSBL-33



variable x25ign

VARIABLE NAME

x25ign -- Count of ignored incoming packets
DECLARATION

extern int x25ign;
DESCRIPTION

An incoming packet will not be recognized if:

o the packet is not a DATA, CALL REQUEST, CALL
CONFIRM, or CLEAR packet.

© an incoming data packet has a logical channel
number (virtual circuit number) that does not
agree with that of any channel defined (by
btusdf()) for the GSBL.

Tou can set x25ign to 0 also. It will be
incremented every time a packet is ignored.

GSBL-34 THE GALACTICOMM SOFTWARE BREAKTHROUGH



variable X25udt

VARIABLE NAME

x25udt -- User data reporting flag

DECLARATION
extern int x25udt; set to 1 to capture the User
Data Field of incoming packets
DESCRIPTION

If you set this flag to a 1, then the User Data
field of an incoming call request packet is tacked
onto the end of the "RING xxx CALLING xxx" string as
a fifth word, as in:

"RING 81020551 CALLING 30448512 IGNEOUS-7"
CAUTIONS

The User Data field should be ASCII and have no
imbedded control characters.

The input buffer for the channel must be large

enough (as specified by btusiz(), btulsz(), or
btubsz()) to hold the entire string.

LIBRARY REFERENCE GUIDE GSBL-35



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

4.0 THE SOFTWARE BREAKTHROUGH LIBRARY ROUTINES

This section, by far the largest in this manual, describes
each of the GSBL routines in detail.

The prototypes for these routines, plus many of the constants

and symbols you can use in programming with the GSBL, are in
the header file BRKTHU.H.

GSBL-36



btubrt

SUBROUTINE NAME

btubrt -- set channel’s baud rate

SYNOPSIS
err=btubrt(chan,bdrate);
int err; zero means OK, -3 means bad baud rate
int chan; channel number

unsigned bdrate; baud rate, in bits per second

For the Model 2408, bdrate must be one
of the values: 300 600 1200 or 2400

For 8250-interfaced serial devices,
bdrate must be between 75 and 38,400.
For the higher baud rates, the rate
should divide evenly into 115,200.

The default baud rate is 2400 baud,
after a channel is reset by bturst().

DESCRIPTION

Use this routine only on Hayes-compatible, or on
RS-232 serial channels (page 7), not on Xecom-
protocol modems.

This function specifies the bit rate (bits per
second) for a specific communications channel. Only
the UART is affected. If you are also using a
modem, then the modem’s baud rate must be set in
some other way. To the blackboard for a moment:
Computer talks to UART, which talks to Modem. The
UART (Universal Asynchronous Receiver/Transmitter)
translates characters from the computer into a
single signal with a pulse for each bit. The modem
(Modulator / DEModulator) translates this into
something that can be transmitted over phone lines
(or other long distance media).

LIBRARY REFERENCE GUIDE GSBL-37



btubrt

The two most common ways that a modem’s baud rate
changes are:

Case 1: incoming calls. W®hen you send the command
to answer an incoming call, the modem responds
with "CONNECT" (for 300 baud) or with "CONNECT
<baud rate>" for other baud rates (600, 1200,
2400,...,9600). After getting that message, the
modem communicates from then on at the specified
baud rate -- you should use btubrt() to change
the UART to that baud rate.

Case 2: on demand. With the modem in command mode,
simply change the UART baud rate using btubrt()
(pronounced bi-TOO-burt) and issue the null
Hayes modem command "AT" (followed by a carriage
return). You should get an "OK" response from
the modem (followed by carriage return and
linefeed) at the new baud rate.

The baud rates for a Model 2408 Breakthrough card
are: 300 600 1200 and 2400. These are the valid
values for the "bdrate" parameter of btubrt(), when
operating on a channel assigned to the Model 2408.

Valid baud rates for 8250-interfaced serial devices

(such as the IBM Asynchronous Communications
Adapter) are between 75 and 38400. If the value you
supply does not evenly divide into 115,200 then you
will have some "truncation error", particularly with
higher baud rates. For example if you supply 110
for the "bdrate" parameter, the actual baud rate
will be 110.03 (plenty good enough). But if you
supply 35000, then the actual baud rate will be
38,400 (way off for sure!).

GSBL-38 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btubrt

haves | oser

TECHNICAL NOTE: If you really must know what the
heck is going on here, the number [115200/bdrate] is
programmed into the 8250 baud rate "divisor" to
achieve the baud rate bdrate. That is, "the
greatest integer less than or equal to
115200/bdrate™. To compute the actual baud rate,
use the formula:

actual baud rate = 115200 / [115200/bdrate]
remembering to replace [115200/bdrate] with the
largest integer greater than or equal to this
quotient.
NON-TECHNICAL NOTE: for those of you not interested
in such truck, the following are perfectly good
values for "bdrate" on 8250-interfaced channels:

75 110 150 300 600 1200 1800

2000 2400 4800 9600 19,200 38,400

RETURNS

=3 baud rate is not valid for the hardware being
used. See the above descriptions for the valid
baud rates.

0 baud rate has been set correctly

CAUTIONS

You should not use a baud rate value greater than
the value set by btumxs() (maximum data speed, see
page 128). If you do, you will lose characters on
input, and have slow output. This is because
btumxs () actually sets the modem service rate -- the
frequency at which all modems are polled for input
and output -- with a 21% safety margin. But
btubrt() sets the frequency of the communication
clocks in the UART (universal asynchronous receiver
transmitter) device, and therefore only affects the
bit rate within each byte.

LIBRARY REFERENCE GUIDE GSBL-39



btubse

SUBROUTINE NAME

btubse -- set backspace-echo character

SYNOPSIS
err=btubse (chan,bschar);
int err; zero means OK
int chan; channel number

char bschar; how to handle a user’s backspace keystroke:
00 -- like any other character
08 -- delete last character (if any)
echo backspace - space - backspace
(default condition)
NN delete last character (if any)
echo NN

DESCRIPTION

This function specifies how to handle the user
backspace keystroke. It applies only to ASCII input
mode, not to binary input mode (page 17). While in
ASCII input mode, any input character that
translates to a value of 8 will be taken as a
logical backspace -- that is, it will delete the
most recently accepted character on the current
input line, if there is one. Note: the translate
feature (see btuxlt(), page 183) can make the "DEL"
character (7F hex) be treated just like the
backspace character. 1In fact, this is the case in
the default translate table (page 185).

The question that btubse() attempts to answer is:
how will this character-delete operation be echoed
back to the users terminal? On a CRT, you will
probably want a "backspace - space - backspace" to
do the work -- erasing the previous character and
leaving the cursor in the position where that
character used to be.

If, however, a user is using a hardcopy device, such
as a teletype machine, it might be better to echo a
backslash ("\"), or something, and let him fiqure
out what he has typed and what he has deleted.

GSBL-40 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btubse

So, if the bschar parameter is 8, the backspace -
space - backspace method will be used. This is the
case by default, after you reset a channel (see
bturst(), page 136). If bschar is some other nonzero
value, then that is what’s echoed upon each

backspace that the user types (when it actually
deletes a character on his input line, that is).

Now, if the bschar parameter is 0, then this idea of
the user's backspace key deleting characters from
his input line is thrown out altogether -- ASCII
code B's are simply passed into the input buffer
just like any printable character.

RETURNS
10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (seé btusiz() or
btulsz(), pages 149, 116)
0 all is well
CAUTIONS

If you are using standard CRT terminals, or terminal
emulators, there is no need to call this routine.

LIBRARY REFERENCE GUIDE GSBL-41



btubsz

SUBROUTINE NAME

btubsz -- respecify input and output buffer sizes

SYNOPSIS
err=btubsz(chan,isiz,osiz);
int err; zero means OK, -5 means bad sizes
int chan; channel number
int isiz; new size of input data buffer
int osiz; new size of output data buffer
DESCRIPTION

This command adjusts the size of the input and
output data buffers for a particular channel. You
might use this to temporarily increase the input or
output buffer for special conditions. You must use
integral powers of two, and their sum must not
exceed that originally specified by btusiz() or by
btulsz() (see cautions, below).

GSBL-42 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btubsz

Typical application: YMODEM uploads. This protocol
requires an unusually large input buffer. Since
YMODEM data packets are 1024 bytes long plus
overhead, you will require an "isiz" parameter of
2048, which allows 2047 bytes in the input buffer.
Let’s say that a much smaller value had been
supplied for "isiz" in your original call to
btusiz():

Initial call to btusiz()

btusiz(NCHAN,256,2048);

parameter "isiz" = 256
parameter "osiz" = 2048

These are reasonable values for a multi-user
bulletin board system, such as The Major BBS by
Galacticomm. The heaviest traffic on a BBS is
usually in the direction toward the users. Output
traffic may include an entire screenful of text: 80
X 24 = 1920 characters plus overhead. Input
traffic, coming from each user's keyboard, is
relatively light, requiring an input buffer big
enough to hold an 80-character line of text.

Now when YMODEM upload is required, you can swap the
capacities of the data I/0 buffers for channel
“chan":

Subsequent call to btubsz()

btubsz(chan,2048,256);
parameter "isiz" = 2048
parameter "osiz" = 256

Then after YMODEM upload has completed, you return
the buffers to their original condition:

Restoring call to btubsz()

btubsz(chan,256,2048);

parameter "isiz" = 256
parameter "osiz" = 2048

LIBRARY REFERENCE GUIDE GSBL-43



btubsz

RETURNS

-10 channel is not defined (see btudef (), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

-5 buffer sizes are invalid: either one of them
is not an integral power of two (128, 256,
etc.), or their sum exceeds the total data
buffering capacity of the channel, as set by
the original call to btusiz() (see page 149)

0 all is well

CAUTIONS

The "isiz" and "osiz" parameters must each be
an integral power of two (e.g. 128, 256, 512, 1024,
2048, 4096 etc.).

The sum of the "isiz" and "osiz" parameters must not
exceed the space reserved for I/O buffers. That is
the sum of the "isiz" and "osiz" parameters that you
specified in your original call to btusiz() or to
btulsz() (whichever you used -- refer to page 149

or 116).

The actual capacities of the I/O buffers are one
less than the values specified in parameters "isiz"
and "osiz".

If you mean to temporarily adjust input and output
buffer sizes, be sure to use btubsz() to restore the
original buffer sizes. Also, bturst() (page 136)
restores the original buffer sizes.

btubsz() automatically clears the data input and
output buffers.

GSBL-44 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuche

SUBROUTINE NAME

btuche —- enable calling of btuchi() when echo buffer
becomes empty

SYNOPSIS

err=btuche(chan,cnoff);

int err; zero means OK

int chan; channel number

int onoff; l=enable calls; O=disable
DESCRIPTION

Normally, the routine specified in btuchi() (see
page 47) is only invoked when an input character

is received, and your program has no way of telling
when the channel’s echo buffer is empty. This
function allows you to turn on or off a feature
whereby each time the channel’s echo buffer becomes
empty, the btuchi() "rouadr" function is invoked
with the channel number and pseudo-key-code of -1 as
parameters. For example:

btuchi(3,&idle);
btuche(3,1);

idle(chan,c)
int chan,c;
{
if (¢ == -1) {
chiout(chan,’”’);
}

else {
chiout(chan,c);
return(0);

}

In this example, '~’ is constantly output on channel
3 when no input is being received. When an input
character is received, it echoes normally, then the
r~r output continues. Note that this process will
not begin until the first character is received.

LIBRARY REFERENCE GUIDE GSBL-45



btuche

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

When your btuchi() "rouadr" function is invoked with
key-code equal to -1, no return value from the
function is expected. Coding such as the example
above may generate warnings by some compilers, since
the function will sometimes return with an explicit
return value, and at other times not. You can solve
this, with only a small loss of efficiency, by
coding the routine so that it always returns 0.

This function exists mainly to support certain
advanced real-time protocols available for The Major
BBS. Be sure that you fully understand the btuchi()
function befcre attempting to use btuche().

GSBL-46 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuchi

SUBROUTINE NAME
btuchi -- set input character interceptor
SYNOPSIS

err=btuchi (chan,rouadr);

int err;
int chan;
char (*rouadr)();

xc=(*rouadr) (chan,c);

char xc;
int chan;
int ¢;

chiinp(chan,c);
int chan;
char c;

chiout (chan,c);
int chan;
char c;

chious(chan,str);

zero means OK

channel number

address of character interceptor
routine (NULL to remove)

the character interceptor routine
new input character (O=ignore)
channel number

the un-translated character
received from the channel

(or -1, see btuche(), page 45)

character input utility
channel number
character to simulate input

character output (via echo buffer)
channel number
character to cutput

string output (via echo buffer)

int chan; channel number

char *str; string to output

chiinj(chan,s); status inject utility

int chan; channel number

int s; status to inject
DESCRIPTION

The btuchi() function provides a simple but powerful
facility for customized handling of received
characters. You can install your own C-language or
assembly language routine so that it is invoked upon
every byte received from a channel. This character
interceptor of yours will only operate in the ASCII
input mode. In the Binary input mode, it is
suspended.

This is one of the most complex and potentially
dangerous routines in the Software Breakthrough
Library. You should not attempt to use it if
concepts like interrupts and reentrant code are
unfamiliar to you.

LIBRARY REFERENCE GUIDE GSBL-47



btuchi

We will describe the C-language method here. For
the assembly language method, refer to your C
compiler documentation sections on linking to
assembly language routines.

To make your own input character interceptor, you
must first code a C-language (or C-language
compatible) function that accepts as parameters a
channel number and a character. The function should
return a single character value. See the synopsis
of "rouadr" above. The syntax of that synopsis:
"(*rouadr)(...)" simply means that the symbol rouadr
represents a "pointer to a function" (which returns
a value of type char, because xc is type char).

Next, you must call btuchi() and pass a channel
number and the address of this custom handler
routine of yours. If you want your custom handler
to remain in effect constantly, you may call
btuchi() right after the channel is defined (see
btudef(), page 82).

Our character handler routine replaces the character
translation function (refer to btuxlt() on

page 183). EHowever, the effects of all functions
associated with ASCII input mode are still in
effect. Again, your interceptor routine is not in
effect when the channel is in Binary mode

(page 17).

The input of a single character goes through the
following sequence of steps during the ASCII

input mode:
Associated

Library

Input Processing Routine

1. Formatting, Overrun, Parity error checking btuerp()

2. Input lockout btulok ()

3. ASCII mode or Binary mode? btuict ()

4. XON/XOFF handling btuxnf ()

5. Output abort character btutru()
6. Translate Table (or btuchi() routine) btuxlt()/btuchi()

7. Backspace btubse()

8. Line terminator btutrm()

9. Line length limit or input word wrap btumil()
10. Input buffer capacity btusiz()/btulsz()

11. Echo btuech()

GSBL-48 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuchi

This table is provided for you to judge the
interdependencies of the above library routines.
For example, if your btuchi() routine returns a
character code 8 (ASCII BS: backspace) then the
backspace handler will swing into effect (it may
echo a space-backspace-space sequence, unless you
have tampered with btubse()).

To de-install your custom character interceptor
routine, simply call btuchi() with a "rouadr"
parameter value of NULL. bturst(), in resetting a
channel, also de-installs any interceptor that may
have been in effect.

EXAMPLE
Here is an example character handler that strips the
high-order bit 7 off of each byte received:

char strip7(chan,c)

int chan;
char c;
{
return(c&l2a7);
}

Then the following call to btuchi() installs this
routine on channel "chan":

btuchi(chan,&strip7);

The following routine de-installs it (restores
default character handling) on channel "chan":

btuchi (chan,NULL) ;

ADVANCED USAGE

Four routines in the Galacticomm Software
Breakthrough Library are provided only for use by
your input character interceptor (btuchi()) or
real-time interrupt (bturti(), page 140)

routine(s). These are chiinp(), chiout(), chious(),
and chiinj() (see synopses above). You may use
these to cause all kinds of things to happen upen
receipt of characters.

LIBRARY REFERENCE GUIDE GSBL-49



btuchi

For example, in a "battleship" game, you may want
the CTRL-E-D-X-S diamond on your user’s keyboard to
control his screen cursor using ANSI-standard cursor
control codes. Your character handler would "echo"
(using chiout() or chious()) the appropriate cursor
control codes upon receipt of the cursor commands
from the user’s keyboard.

Also, keyboard macros could be implemented using
chiinp(). You could translate special control codes
from a user’s keyboard into a whole stream of
characters. For example, you may want a user to be
able to type CTRL-G when he means "GO
FORWRARD"<Enter>.

Yet a third example would be inter-channel-chat.
Let’s say you make the following character
interceptor routine:

uchat (chan,c)
int chan;
char c;

chiout(chana,c);
chiout(chanb,c);
return(0);

}

Then you could install this routine as the input
character interceptor for BOTH channels A and B:

btuchi (chana,&uchat);
btuchi (chanb, &uchat) ;

Now whatever character is typed by EITHER the user
on channel A OR the user on channel B is immediately
echoed to the screens of BOTH users.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-50 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuchi

CAUTIONS

Your character handler routine (the "rouadr"
parameter passed to btuchi(), above) must be coded
to execute very fast, in order not to hinder
operation of the Software Breakthrough. The
Software Breakthrough has been coded in assembly
language and honed and polished into a lightning
fast computing machine. That's why we can claim
256-user capability on the IBM PC/AT and
compatibles. You have the opportunity to change all
that by intercepting input characters with a slow
clunky handler routine. In particular, your routine
should only interact with variables and data
structures in memory (you don’t have enough time to
even THINK about disk I/0O!).

Since these routines may be called at the interrupt
level, take care that any data structures used by
both the "rouadr" character handler, and by any
other of your routines, are not "skewed". This
happens when your mainline (not interrupt generated)
routine changes a data structure, and halfway
through such a change, the interrupt generated
handler tries to use or change the same data
structure. Remember that your character handler can
be invcked AT ANY TIME.

The routine identified as a character interceptor
(by passing its address to btuchi()) should only be
used for that purpose, and called under no other
circumstances.

chiinp(), chiout(), chious(), and chiinj() must be
called only by the routine(s) that are used as input
character interceptors, or real-time interrupt
handlers —- that is, whose address is passed as a
parameter to btuchi() or bturti() (page 140).

The chiout() and chious() routines are limited by
the size of the echo buffer: 255 bytes.

LIBRARY REFERENCE GUIDE GSBL-51



btuchi

Note to experts about interaction between echo modes
and the btuchi() routine on X.25 channels:

Conditions: 1) X.25 channel
2) In echo-plex mode
3) You are using btuchi(chan,&custom) with
a custom routine that returns values
{(intending them to be input AND echoed)
and those values are NOT the same as the
values input to the custom routine.

Action: call btuech(chan,2) when you install
btuchi (chan,&custom), and recover btuech(chan,
whatever) when you uninstall btuchi (chan,
NULL). See page 86 on the values for the
btuech() echo parameter.

Reasoning: when you install the custom routine, you
want the user’s PAD to stop blindly echoing
everything the user types, and start having the GSBL
decide what gets echoed (via return value from your
custom routine). That means that you do NOT want
echo-plex -- you want the GSBL to echo.

GSBL-52 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuclc

SUBROUTINE NAME
btuclc —- clear command output buffer
SYNOPSIS

err=btuclc(chan);

int err; zero means OK
int chan; channel number
DESCRIPTION

btuclc() aborts any commands that may be in progress
(refer to btucmd(), page 58), and clears the

command buffer for the specified channel. A status

65 (refer to page 161) may be generated if a command
was in progress.

RETURNS
10 channel is not defined (see btudef(), page 82)
11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-53



btucli

SUBROUTINE NAME
btucli -- clear data input buffer
SYNOPSIS

err=btucli(chan);

int err; zero means OK
int chan; channel number
DESCRIPTION

Clears the data input buffer for the specified
channel. Aany queued input, even partial input
strings or blocks, are completely cleared as though
they were never received.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

Calling this routine can cause inconsistencies
between the status buffer contents and the input
buffer contents. For example, if a CR-terminated
string has been received but not yet processed at
the time btucli() is called, the status of 3
(CR-TERMINATED INPUT DATA STRING AVAILABLE) will
remain queued, but there will be no corresponding
input data string available.

GSBL-54 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuclo

SUBROUTINE NAME

btuclo —-- clear data output buffer

SYNOPSIS
err=btuclo(chan);
int err; zero means OK
int chan; channel number
DESCRIPTION

btuclo() aborts any data output operation underway
on the specified channel, clears its data output
buffer, and eliminates the effects of XOFFs
received, if any (see btuxnf(), page 192).

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well
CAUTIONS

Any output data pending for the specified channel
will be lost when this routine is called.

LIBRARY REFERENCE GUIDE GSBL-55



btucls

SUBROUTINE NAME

btucls -- clear status input buffer

SYNOPSIS
err=btucls(chan);
int err; zero means OK
int chan; channel number
DESCRIPTION

Provided only for completeness, this routine clears
the highly sensitive status-input buffer, the key
area upon which the sensing of modem condition
depends. In other words, you should almost never
need to use btucls().

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

Do not call this routine unless you totally
confident that this is really what you want to do,
since it is potentially dangercus to arbitrarily
clear out what might be critical modem status
information, such as "lost carrier".

GSBL-56 THE GALACTICOMM SOFTWARE BREAKTHROUGH



LIBRARY REFERENCE GUIDE GSBL-57



btucmd

Statuses Generated s Generated
Command Description on HAYES hardware on XECOM hardware
R ROTARY (PULSE) DIAL MODE 12 2
T TOUCE-TONE DIAL MODE 12 2
1233 \
456 DIAL R DIGIT (TOUCH 1z 2
789 / TONE OR ROTARY)
Modem o /
Dial
Commands a \
b \ DIAL A SPRCIAL DIGIT 12 2
c /  (TOUCH TONE ONLY)
* 4d /
L WAIT FOR DIAL TONL 12 3 2 B W orTY
PRE e by
A ANSWER-CARRIER WITH NO FRILLS 12 3 i i L
*R ANSWER-CARRIER WITH DETECTIONS 12 3 2 vyt rqn fpe
Modem Qe gt
Mode o ORIGINATE-CARRIER WITH NO FRILLS 12 3 2 LIR LRL g
Commands M ORIGINATE-CARRIER WITH DETECTIONS 12 3 2 938 TpL g
PRf TRY fpr oty
D DTMF RECEIVE MODE (TOUCE TONE INPUT) 13 4
h:| HOLD (OFF-EOOK, MODEM DISCONNECTED) 13 2
Baud g SET SPEED TO 300 BPS 12 & g
Rate *B SET SPEED TQ 1200 BPS 12 Z 1y}
Commands p SET SPEED TC 2400 BPS 12 iy
> SET PARITY TO "EVEN" 12 2
< SET PARITY TO "ODD" 12 2
Framing - SET PARITY TO "NONE" (NO PARITY BIT) 12 2
Commands Ag SET CHARACTER LENGTE TO 7 BITS 12 2
Rg SET CHARACTER LENGTE TO 8 BITS 12 2
N SET STOP BITS TO ONE 12 2
N SET STOP BITS TO TWO 12 2
Fause ® PAUSE 5 SECONDS 12z 2
Commands P PAUSE 2 SECONDS 12 2
t PAUSE 1/10 SECOND 12 i b
ANSI [ ENABLE ANSI GRAPHICS (default) 12 2
Commands 1 DISABLE ANSI GRAPHICS 12 2
I IDENTIFY MODEM VERSION 13 4 *
i IDENTIFY REVISION NUMBER 13 4+
"M CONTINUQUS MONITOR, RETURN LINE FREQ 13 4 =
Diagnostic L LINE ANALYZE 13 4
Commands 1 (ell) RETURN 1200-BPS ERROR STATISTICS 13 4%y
X ANALOG LOOPBACK IN CRIGINATE MODE 13
L 4 ANALOG LOOPBACK IN ANSWER MODE 13
Invalid | (Anything 13 igF
Command else)

* These commands return information in the receive buffer. We recommend that you use btutrg() (to select
binary recieve mode) so that a status 4 is generated when these bytes are available.

Note 1:

A status code of 13 from HAYES category hardware, or ’7' from XECOM category bardware, means that the
command is not supported on this hardware.

Note 2:
On BAYES category hardware, commands which generate a status 3 return information in the receive buffer.
The channel should be in the ASCIT receive mode so that a status 3 indicates the availability of these
bytes. This is the default mode, but if you should select binary receive mode using btutrg(}, be sure
Lo restore ASCII receive mode, also using btutrg(). In these cases, btusts() will return the status 3
AFTER it returns the status 12.

Note 3:

The baud rate, framing, pause, and ANSI commands are "soft" commands that are processed by the PG,
rather than by the modem hardware. If you use btucmd() with a string of commands, all of the soft
commands will be executed first, and then all of the "hard" commands .

These soft commands are the exact set of commands that may be issued on UART category hardware.

Figure 4-1: Summary of Hayes and Xecom Commands

GSBL-58 THE GALACTICOMM SOFTWARE BREAKTHROUGH




btucmd

SUBROUTINE NAME

btucmd -- command channel
SYNOPSIS

err=btucmd (chan,cmdstq) ;

int err; zero means OK

int chan; channel number

char *cmdstg; command string (ASCIIZ)
DESCRIPTION

This routine controls functions of the UART and (if
used) the modem on a channel. For example, you
could dial up the Galacticomm Demo system with the
following C-language statement:

btucmd(chan, "WT13055837808M" ) ;

1f the call goes through as expected, btusts(chan)
will eventually return a value of 12 (for HAYES
hardware), or 2 (for XECOM hardware), meaning that
command execution has completed successfully. (See
page 7 for a discussion of hardware categories).
Meanwhile your program can be off doing other
things. Note that a status of 2 or 12 is created
only when the end of the command string is reached,
not on each command byte, and only when no other
status from the modem is present after the last
command byte in the string has been executed.

The syntax of the command string closely follows the
modem command protocol developed by Xecom. However,
many of these command codes can also be used on
HAYES or UART category hardware. We have also added
some command codes of our own, which are hardware
independent. The services accessed by btucmd() fall
into six categories, as shown in figure 4-1. This
table shows which commands are supported on which

hardware:

HAYES XECOM UART
Modem dial commands all all none
Moden mode commands most all none
Baud rate commands all most all
Framing commands all all all
Pause commands all all all
ANSI commands all all all
Diagnostic commands none all none

LIBRARY REFERENCE GUIDE GSBL-59



btucmd

Unsupported commands generate a status 13 on HAYES
and UART category hardware, and a status 63 (’?’) on
XECOM category hardware (refer to btusts(),

page 153).

On Hayes-protocol hardware (including the
Galacticomm Model 2408), all Modem dial commands,
baud rate commands, framing commands, and pause
commands are supported.

Most modem mode commands are supported. Some of
these ("A and 0) have reduced features over their
Xecom-protocol counterparts. Others (D and H) are
not supported on Hayes hardware.

None of the Diagnostic commands are supported on
HAYES category hardware.

If you are exclusively using HAYES category
hardware, you may want to use btuxmt() (the transmit
routine, page 189) to handle the modem dial, and
modem mode functions instead of btuemd().
Hayes-protocol modems have an "AT" command language
for controlling the modem. See your modem manual
for more details. The following table shows the
modem mode commands that are translated into
Hayes-protocol "AT" command codes by btucmd().

btucmd () Hayes
command command
character character Function
“Aor A A Answer incoming call
W D Wait for dial-tone and
dial a number
Mor O 0 Go online (generate

originate-carrier)

GSBL-60 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

| HAYES |

The btuemd() modem dial commands are translated
directly into parameters of the Hayes-protocol "D"
command. For this reason, when any of the following
btucmd() commands are used on HAYES category
hardware, they must be placed immediately following
the btucmd() "W" command (wait for dial-tone), which
is translated into the Hayes-protocol "D" command

(dial).
btucmd () Hayes
command "D" command
character parameter Function
R P Rotary (pulse) dial mode
T 7 Touch-tone dial mode
0-9 0-9 %
* § * § > Output DTMF tone
abcd abcd 7

For example, the sample C-language statement
mentioned above for dialing the Galacticomm Demo
system was:

btucmd(chan, "WT13055837808M" ) ;

For HAYES category hardware, this statement has
almost the identical effect as:

btuxmt (chan,"ATDT130558378080") ;

The major difference being that when the btucmd()
directive has completed, a status code of 12 is
generated (page 155), assuming nothing goes wrong
with the call. Minor differences include the
generation of a status 5 after btuxmt() (if btuoes()
has enabled it, see page 131), and that btucmd() on
HAYES category hardware uses the echo buffer for
output and is subject to its limitation of 255
characters at a time.

LIBRARY REFERENCE GUIDE GSBL-61



btucmd

| haves | uant |

On HAYES category hardware, some commands are
handled by the Software Breakthrough, and others are
passed directly to the modem hardware. We will call
these "soft" and "hard" commands. The soft commands
are the baud rate, framing, pause, and ANSI commands.
The hard commands are modem mode and dial commands,
and the diagnostic commands.

Soft commands are the only commands available on
UART category hardware.

On HAYES category hardware, if you have a btucmd()
string with mixed soft and hard commands, then all
of the soft commands are executed first, followed by
all of the hard commands. For example, the command
string:

btucmd(chan,"ap");

will pause for 2 seconds ("p" is the pause command
—-- a soft command), and then answer an incoming call
("A" is the answer command -- a hard command) .
However, if you use the following approach:

btucmd(chan,"a");
btucmd(chan, "p");

then the answer will precede the pause. See also
page 191 for a description of the priority that
transmitting takes over command execution.

Instead of the btucmd() baud rate commands, you may
want to use btubrt() (page 37) to select the baud
rate on HAYES and UART category hardware.

All of the commands of btucmd() are supported on
XKECOM category hardware (Galacticomm Models 16 and
4), with the single exception of the "F command
(2400 baud).

The framing and pause commands provided by btucmd()
apply to all categories of hardware. These
functions can be obtained through no other Software
Breakthrough library routine.

GSBL-62 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

Be sure to review the CAUTIONS at the end of this
section on btucmd() (page 80).

Here are the letter command codes that are valid for
LAN channels:

Page
'L Listen for connection (SPX only) 71
W' Prefix to "dialout" command 76

rgr=tg9’ \ 24-digit network/node/socket addr 76
rar—tF' 7 specified for "dialout" command

M’ suffix to "dialout" command 76
e Terminate an SPX connection 76
G’ Greet another GSBL and offer to 69
handle its input preprocessing
L 5-second pause (uppercase 'P') 73
'p’ 2-second pause (lowercase 'p') 73
A Disable auto PAD echo programming 75
e Enable ANSI-X3.64 output 79
L Disable ANSI-X3.64 output 80

The following command codes may be used on X.25

channels:
Page
TR’ Answer an incoming call 68
"H' Prefix to "dialout" command 78
10r-"9'  Digits of address or user data field 78
rp’-'F’  Digits of user data field 78
L Between caller and callee address 78
M’ suffix to an outgoing dial command 78
7 prefix hexadecimal user data field 78
rpr 5-second pause (uppercase 'P') 73
npt 2-second pause (lowercase 'p') 73
LA i enable ANSI-X3.64 output 79
i disable ANSI-X3.64 output 80

Astute readers will notice that ‘A’ appears twice in
the above list. ’A’ is a hexadecimal digit when, in
a 'W' command, it appears after a '/' and before the
'M’. Otherwise, 'A’ is an answer command.

Command codes 'T' and 'R’ are ignored on X.25
channels. BAll other codes will produce a status 23
(page 156), and the remainder of the command string
will not be processed.

LIBRARY REFERENCE GUIDE GSBL-63



btucmd

"A (or CONTROL-A) = ANSWER-CARRIER WITH DETECTIONS (TT,VOICE)

This command acts just like command "A"
(ANSWER-CARRIER WITH NO FRILLS) on HAYES hardware.
See page 68 for details.,

This command puts "answer carrier" on the line, and

will generate a status of 2 if "originate carrier"
is heard within 17 seconds. It acts just like the
reqular A command, but adds extra monitoring
capability -- the answer sequence may be aborted by
the caller in two ways. If the caller presses the
DIMF "1" key, a status code of 49 (ASCII "1") is
generated. If the caller speaks, a status code of
118 (ASCII "v") is generated. 1In either case the
answer carrier tone is terminated.

"E (or CONTROL-E) = SET CHARACTER LENGTH TO 8 BITS

This mode can be used for binary data protocols such
as XMODEM, etc. This command works on all hardware
categories.

"F (or CONTROL-F) = SET SPEED TO 2400 BPS

Sets the UART to 2400 baud. For HAYES category
hardware, this command (or a call to btubrt()) must
be issued after an answer command (command "A",
page 68) results in a "CONNECT 2400" message.

"H (or CONTROL-H) = SET SPEED TO 1200 BPS

Sets the UART to 1200 baud. For HAYES category
hardware, this command (or a call to btubrt()) must
be issued after an answer command (command "A",
page 68) results in a "CONNECT 1200" message.

For outgoing calls, sets the "preferred speed" of
the modem to 1200 bits per second. For incoming
calls, results in a status 'I' (for INAPPROPRIATE)

GSBL-64 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

when a 300 BAUD connection is already established.

“M (or CONTROL-M) = CONTINUOUS MONITOR, RETURN LINE FREQ

This command causes the modem to turn into a sort of
spectrum analyzer, reporting back the frequency it
hears 20 times a second. The frequency is reported
as a data byte ranging in value from 0 to 255:

0 wum s e Quiet, no frequency at all
1 to 254 .... Frequency in tens of Hz
255 Liiiienns Frequency greater than 2540 Hz

This function can only be terminated by a call to
either bturst() (which resets the channel) or
btuclc() (which clears the command buffer and aborts
any command currently underway).

"N (or CONTROL-N) = ONE STOP BIT

Set the UART in this channel to use 1 stop bit.
This mode is the default condition after bturst().

“S (or CONTROL-S) = SET CHARACTER LENGTH TO 7 BITS

This mode is the default upon channel reset. This
command works on all hardware categories.

“T (or CONTROL-T) = SET SPEED TO 300 BPS

Sets the UART to 300 baud. For HAYES category
hardware, this command (or a call to btubrt()) must
be issued after an answer command (command "A",
page 68) results in a "CONNECT" message.

For outgoing calls, sets the "preferred speed" of
the modem to 300 bits per second. For incoming
calls, will result in a status code of I
(INAPPROPRIATE) when a 1200 baud connection is
already established. This is the default upon
channel initialization or reset.

LIBRARY REFERENCE GUIDE GSBL-65



btucmd

"W _(or CONTROL-H) = THO STCP BITS

Set the UART in this channel to use 2 stop bits.

"X (or CONTROL-X) = ANALOG LOOPBACK IN ORIGINATE MODE

This command initiates a local loopback in the
originate band. The filters for transmit and
receive are set for the originate frequencies and
are looped to each other. Transmitted data is
routed through the full analog-digital path before
being received back at the receiver port. May be
used at any "preferred speed", to test all possible
encode/decode components in a modem module. Once
put in this mode, the channel must be reset (see
bturst(), page 136) to get ocut of it.

"Y (or CONTROL-Y) = ANALOG LOOPBACK IN ANSWER MODE

This command initiates a local loopback in the
answer band. The filters for transmit and receive
are set for the answer frequencies and are looped to
each other. Transmitted data is routed through the
full analog-digital path before being received back
at the receiver port. May be used at any "preferred
speed", to test all possible encode/decode
components in a modem module. Once put in this
mode, the channel must be reset (see bturst(),

page 136) to get out of it.

0 tc 9 = DIAL 0 to 9 (ROTARY PULSE OR TOUCH TONE)

The corresponding digit will be rotary dialed or
touch-tone dialed depending on the current mode
(previous R or T command). On HAYES category
hardware, these codes must only be used after the
"W" command (page 75).

GSBL-66 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

A = ANSWER-CARRIER WITH NO FRILLS

Siaves -

This command puts "answer carrier" on the line, and
generates a status 3 if "originate carrier" is heard
within 17 seconds. The status 3 indicates a
received data string that you can get out of the
receive buffer by using btuinp() (refer to

page 108). Some examples of the string:

"CONNECT" when 300 baud carrier
has been detected

"CONNECT 2400" when 2400 baud carrier
has been detected

"CONNECT <baud>" when other baud rates

have been detected
"CONNECT <baud><mode>" for special compression
or correction modes

If no carrier is detected in 30 seconds, the
following string usually appears in the receive
buffer:

"NO CARRIER" no originate carrier detected
within 30 seconds.

This command puts answer carrier on the line, and
will generate a status of 2 if originate carrier is
heard within 17 seconds. Otherwise a status code is
generated indicating: ‘T (TIMEOUT), or "I’
(INAPPROPRIATE). This is the command you would
normally use to pick up the phone when it rings
(rather than the ""A" command).

The "A" command will answer an incoming call on an
X.25 line if issued immediately after receiving a
status 3 with "RING" message:

RING <caller> CALLING <callee>

Where <caller> is the decimal network address (if
available) for the source of this call, and
<callee> is your network address. The "A" command
generates an immediate status 22.

GSBL-68 THE GALACTICOMM SOFTHARE BREAKTHROUGH



btucmd

If you set x25udt to 1, then btuinp() will return:
RING <caller> CALLING <callee> <user data field>

See page 35 for details on the limitations of this
method.

D = DTMF RECEIVE MODE (ACCEPT TOUCH TONE INPUT)

When placed in this mode, a modem will recognize
incoming DTMF tone pairs as data input. The ASCII
representations of 0-9, a-d, *, and # will be
buffered as input data characters when they are
detected. Note that DIMF information can be
transmitted by issuing the normal digit dial
commands. This mode is cancelled by a H, M, O, or A
command.

G = GTC GREETING (LAN)

The Galacticomm Terminal Configuration protocol was
designed for two computers that are connected via
Advance LAN channels. GIC allows one computer to
preprocess the input of the other computer. The
presumption is that both computers are using the
GSBL to communicate.

For example, GTC can be used in a terminal emulation
program talking to The Major BBS Bulletin Board
System. The ’'G’ command is executed in the terminal
program once connection is established and says in
effect: "Offer to preprocess the input of the BBS".
This includes buffering an input line with or
without echo, input word wrap, etc. Executing the
'G’ command paves the way for status codes 40 - 44
to appear for the terminal program to handle
(informing it of changing BBS input modes). For the
BBS program all aspects of this exchange are handled
by the GSBL and need no special handling by the BBS
C program. The key point to remember here is that
you only have to consider handling GTIC if you
execute the 'G' command.

See page 223 for more on the GTC protocol. GTC is
only available in the Advanced LAN Option of the
GSBL.

LIBRARY REFERENCE GUIDE GSBL-69



btucmd

= HOLD (DISCONNECT MODEM, BUT REMAIN OFF-HOOK)

Performs a "logical disconnect" of the modem from
the phone line, but does not terminate the physical
| connection (i.e. the phone remains "off-hook").
‘ This command can be used to quiet the line for voice
or other use during a connection.

I = IDENTIFY MODEM VERSION

Causes a single ASCII letter representing the
version of the modem module to be generated as an
input data character. Version codes are assigned
consecutively, starting with "A" (65 decimal).
Version number changes correspond to "significant
unity upgrades", whereas revision numbers (see "i",
immediately following) represent incremental
enhancements.

i = IDENTIFY REVISION NUMBER

Causes a single ASCII digit representing the
revision code of the modem module to be generated as
an input data character. This will usually be of no
concern to you, since only "version numbers" (see
"I", immediately above) correspond to "significant
unity upgrades".

= LINE ANALYZE

This command acts the same as the M command but
generates three special data input bytes if
successful. The first byte represents the carrier
frequency error, the second the S/N ratio, and the
third the received carrier level. The calculations
necessary for meaningful interpretation of this
information are covered in Xecom data sheets.

GSBL-70 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

L = LISTEN FOR SPX CONNECTION (LAN)

This command prepares the channel to accept a
connection request from another party (presumably a
terminal program like SPXTALK). The channel will
remain in the listen-for-connection mode until a
connection is established or until the channel is
reset with bturst().

The listen command should only be issued on SPX
channels that are in the idle state (see

page 215). The 'L’ command will have no effect on
an IPX channel.

1 (LOWERCASE L) = RETURN 1200-BPS ERROR STATISTICS

|_xecom |

This command may be used during a 1200 bps
connection to check the phase demodulation
ctatistics. An I (INAPPROPRIATE) status is
generated if no 1200 bps connection exists.
Otherwise two data bytes are queued: the first
gives the average phase error of the signal, and the
second gives the number of "phase hits" since the
last request. The calculations necessary for
extracting meaningful information from these values
are covered in Xecom data sheets.

LIBRARY REFERENCE GUIDE GSBL-71



btucmd

M = MONITOR LINE AND ORIGINATE WITH DETECTIONS

The modem goes to the Online mode, waiting for
answer carrier. If answer carrier is detected
within 30 seconds, the following string appears in
the receive buffer (refer to btuinp(), page 108):

"CONNECT" when 300 baud carrier has
been detected

"CONNECT 1200" when 1200 baud carrier has
been detected

"CONNECT 2400" when 2400 baud carrier has
been detected

If no answer carrier is detected within 30 seconds,
the following string appears in the receive buffer:

"NO CARRIER" no answer carrier detected
within 30 seconds.

This command will generate a status of 2 if answer
carrier is heard within 17 seconds. Otherwise a
status code is generated indicating: B (BUSY), R
(RINGING), I (INAPPROPRIATE), T (TIMEOUT), D (DIAL
TONE), or V (VOICE). You should reissue the M
command if you want to continue the attempt (e.q.
for the first few rings).

See page 76 for using the ’'M’ command on LAN
channels.

O = ORIGINATE-CARRIER WITH NO FRILLS

This command acts identically to the "M" command on
the HAYES category hardware.

The modem goes to the Online mode, waiting for
answer carrier. If answer carrier is detected
within 30 seconds, the following string appears in
the receive buffer (refer to btuinp(), page 108):

"CONNECT" when 300 baud carrier has
been detected

GSBL-72 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

"CONNECT 1200" when 1200 baud carrier has
been detected

"CONNECT 2400" when 2400 baud carrier has
been detected

If no answer carrier is detected within 30 seconds,
the following string appears in the receive buffer:

"NO CARRIER" no answer carrier detected
within 30 seconds.

This command will generate a status of 2 if answer
carrier is heard within 17 seconds. Otherwise a
status code is generated indicating: T (TIMEOUT),
or I (INAPPROPRIATE). This command is primarily
useful when the physical connection is already
established, and your program decides to begin using
it for data communications. When making a new
connection, use the "M" command (page 72).

P = PAUSE 5 SECONDS

The "long pause". Works on all hardware categories.
p = PAUSE 2 SECONDS

The "short pause". Works on all hardware categories.
R = ROTARY (PULSE) DIAL SUBSEQUENT DIGITS

This is the default condition, upon initialization
‘ or reset. This command must follow a "W" command.

LIBRARY REFERENCE GUIDE GSBL-73



btucmd

Use this command to dial on a phone line which does
not support touch-tone dialing.

T = TOUCH-TONE DIAL SUBSEQUENT DIGITS

This command must follow a "W" command.

This is the default, upon initialization or reset.

T = TERMINATE SPX CALL (LAN)

The terminate command will gracefully end an SPX
session. A status 36 on the end that issued the 'T’
command indicates that the session was terminated
properly. A status 31 on the other end (in the GSBL
of a program to which your program is connected)
indicates the session was terminated. Here’s a
diagram of how an SPX session is terminated with the
'T! command:

Application 1 --> GSBL --/ /-- GSBL --> Application 2
N
== HDE EMd > S
\ \ -- status 31 -->
<-- status 36 - / /

The terminate command should only be issued on SPX
channels that are in the connected state (see

page 215). At any other time, the terminate
command will have no effect. The ’'T' command will
have no effect on an IPX channel.

t = WAIT 1/10 OF A SECOND (HAYES AND UART)

Generates a status 12 after 0.1 seconds. Works only
on 8250-type UARTs and modems or Model 2408 cards.

GSBL-74 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

YV = DISABLE AUTOMATIC PAD ECHO PROGRAMMING

Normally, turning echo on and off with btuech(), or
switching between binary and ASCII input modes with
btutrg() would automatically cause programming of
paramter 2 of the remote PAD. This command disables
that feature until the next bturst().

W = WAIT FOR DIAL TONE (TO PLACE AN OUTGOING CALL)

RIEE

This command is usually accompanied by digit dial
commands, such as:

btucmd (chan,"WT13055837808M");

(which would dial the Galacticomm Demo system from
your channel "chan").

In this case, if connection is established within

30 seconds, a status 12 is generated, along with the
following string in the receive buffer (refer to
btuinp(), page 108):

"CONNECT" when 300 baud carrier has
been detected

"CONNECT 1200"  when 1200 baud carrier has
been detected

"CONNECT 2400" when 2400 baud carrier has
been detected

1f no answer carrier is detected within 30 seconds,
the following string appears in the receive buffer:

"NO CARRIER" no answer carrier detected
within 30 seconds.

This command will generate a status of 2 if a dial

tone is sensed within 5 seconds. Otherwise a status
code is generated indicating: B (BUSY), M (MODEM
CARRIER SENSED), I (INAPPROPRIATE), R (RINGING), T

| (TIMEOUT), or V (VOICE).

LIBRARY REFERENCE GUIDE GSBL-75



btucmd

LAN Dialout Command: 'W’, digit, and ’'M’

This command is used to make an outgoing call on
the network and establish connection with another
address on the network.

For SPX channels, a dialout command means to
establish a connection with a remote network/node/
socket. You can have multiple SPX connections
between the same pair of network/node/sockets.

For IPX, a dialout command specifies who we will
talk to and who we will listen to. After an IPX
dialout command on a particular channel, all
transmissions on the channel will go to the
specified network address. And all packets received
from that address (and directed to the same local
socket number) will be routed to the input buffer of
the channel.

On IPX Virtual circuits, the dialout command may
also be used to establish an incoming call. 1In

the "raw-packet mode" an IPX Virtual Circuit reports
the complete IPX packet to you. Then you can look
at the source network/node/socket of this packet to
determine who is attempting to communicate with you
(page 219). You can format the results of this
report into a dialout command to complete the
"connection".

You can issue dialout commands on IPX channels
whenever you want. When you do, all transmits and
receives since the most recent call to btuscn(.)-
will correspond to the new network address. These
transmits/receives will be processed/available after
the next call to btuscn().

SPX channels are more complicated. The dialout
command should only be issued on SPX channels that
are in the idle state. See page 215 for details.

If you use a dialout command to specify a
network that is not connected, then the GSBL
may appear to "hang" for several seconds, and
then issue a status 39 (page 158).

GSBL-76 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

Unique Network Addresses for IPX Dialouts

Among channels with the same local socket number,
the network/node/socket of an IPX dialout command
should be unique. That is, once you specify a
certain network/node/socket for the dialout command
on one channel, you should not specify the same
network/node/socket for the dialout command on any
other channel that shares the same local socket.
For example,

This is not a good idea:

btusdf(0,2,6,0x4007,2);
btucmd(0, "W0O00000010000C0A61018M") ;
btucmd(1, "W000000010000C0A61018M") ;

(same local socket number, same destination n/n/s)

This is CK:
btusdf(0,2,6,0x4007,2);

btucmd(0, "W000000010000C0A61018M" ) ;
btuemd(1, *Ww000000010000COCEQD18M" ) ;

(different destination n/n/s)

This is also OK:
btusdf(0,1,6,0x4007,2);
btusdf(0,1,6,0x4008,2);
btucmd(0, "W000000010000C0A61018M" );
btucmd(1, "W000000010000C0A61018M" ) ;

(different local socket number)

The result of IPX dialouts from two channels with
the same local socket calling the same network
address are: received packets may wind up in the
input buffer of either channel, arbitrarily.
Transmitted packets have no such ambiguity (although
the other party may not be able to distinguish the
originating channel).

Special Syntax of the Dialout Command

An outgoing call may be specified by multiple
btucmd() calls, as long as there are no other
intervening calls to breakthrough routines. For
example:

btucmd(chan, "W");
btucmd(chan, "00000001");
btucmd(chan, "0000C0A81018");
btucmd(chan, "4007");
btucmd(chan, "M");

will have the same results as:

btucmd(chan, "W000004010000C0A810184007M") ;

LIBRARY REFERENCE GUIDE GSBL-77



btucmd

X.25 Dialout Command: ‘KW', digits, slash, hex digits, and ‘M’

To place an outgoing call on an X.25 channel, issue
any of the following command string formats, using
btucmd( ) :

W<caller>,<callee>/<user data field>M
W<callee>/<user data field>M
W<caller>,<callee>M

W<callee>M

You can use 'T's or 'R’s in the above commands for
compatibility with XECOM channels, where they mean
T=touch tone or R=pulse dialing. For X.25 channels,
they have no effect. For example:

btucmd(chan, "WT100657,399613M");

In this case, you are seeking network address
"399613", while identifying yourself as network
address "100657".

Note: an outgoing call may be specified in segments
as long as there are no intervening calls to other
GSBL routines. For example:

btucmd(chan, "W1234,");
btucmd (chan, "6789M" ) ;

will have the same results as:

btucmd(chan, "W1234,6789M") ;
The user data field of an outgoing call request
packet is normally empty. To put data into the user

data field, code it in hexadecimal after the '/’
(slash) command, for example:

btucmd(chan, "W1234,6789,/41423031M") ;
That example will put the 4-byte ASCII string "ABO1"
into the user data field. This data need not be

ASCII. To code three zero bytes and a byte with
value 01 hex:

btucmd(chan, "W1234,6789,/00000001M") ;

GSBL-78 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucmd

Important note:

The outgoing call, if completed, may not actually be
made over the same channel that you specify in
btucmd(). The PC XNet card driver will decide the
actual "virtual circuit" to use for the call.
Specifying the channel for btucmd() with a dial-out
command does serve the purpose of identifying the
card and line to use. The PC XNet card usually puts
the call on the highest unused channel that has
been configured (unless the line is configured as
"DCE", in which case outgoing calls go over the
lowest available channel).

when an outgoing call has been confirmed, status
code 77 (ASCII 'M') is generated on the channel on
which the call has been established.

If an outgoing call fails, either: status code 66
(ASCII ’'B’) is generated if there is some local
transmission error encountered when transmitting the
call request packet (like transmit window full); or
status code 21 ("lost carrier") is generated if the
network refuses to connect your call, perhaps
because the network address you specified is busy,
or does not exist.

To terminate a call, bturst() disconnects the
virtual circuit. When a call gets terminated,
either by the network or by the remote user, status
code 21 is generated on the channel.

[ = ENABLE ANSI GRAPHICS (default)

This command affects the operation of btuxmt() when
transmitting the following construct:

<ESC> [ <for-ANSI-users> ﬂ <for-non-ANSI-users> ]

If ANSI graphics have been enabled for a channel by
this command, (or by default), then the string
<for-ANSI-users> from the above construct will be
transmitted and the string <for-non-ANSI-users> will
NOT be transmitted.

ANSI graphics are automatically enabled by bturst().

See page 190 for more information on ANSI graphics
directives.

LIBRARY REFERENCE GUIDE GSBL-79



btucmd

] = DISABLE ANSI GRAPHICS

This command affects the operation of btuxmt() when
transmitting the following construct:

<ESC> [ <for-ANSI-users> | <for-non-ANSI-users> ]

If ANSI graphics have been disabled for a channel by
this command, then the string <for-ANSI-users> from
the above construct will NOT be transmitted and the
string <for-non-ANSI-users> WILL be transmitted.
Also, ANSI graphics directives embedded in the text
passed to btuxmt() will not be transmitted to that
channel. See page 190 for more information on these
directives. ANSI graphics are automatically enabled
by bturst().

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

If data input or output is in progress when this
call is made, the data operation will be allowed to
complete before the command string is executed. See
page 191 on the priority of transmission over
commands .

The framing commands must be reissued each time you
reset a channel (by bturst(), page 136).

The command buffer can hold 62 characters at a time.

To use btuemd() on HAYES category hardware, the
modem must be in command mode.

GSBL-80 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btucpc

SUBROUTINE NAME

btucpc -- set the clear pause-counter character
(puts off screen pauses when in output stream)

SYNOPSIS
err=btucpc(chan,cpchar);
int err; zero means OK
int chan; channel number
char cpchar; clear pause-counter character
(or 0 to disable)
DESCRIPTION

Khen the cpchar character is discovered in the
output stream (btuxmt{) or btuxmn() -- see page 189
or page 187), the internal line counter is reset to
0. This line counter is used to determine when to
display the pause message set by btuhpk()

(page 99). The character itself is never actually
output. Use cpchar=0 to disable this feature.

In The Major BBS this function is used to prevent
screen pauses by inserting the Control-S character
at strategic points in certain text blocks.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-81



btudef

SUBROUTINE NAME
btudef -- define channels
SYNOPSIS

err=btudef (schan,sport,n);

int err; zero means OK

int schan; starting channel number
int sport; starting port address
int n; number of channels

DESCRIPTION

After you initialize the Software Breakthrough as a
whole, using btusiz() (or btulsz()) and btuitz(),
then you use btudef() to initialize individual
channel groups. You will call btudef() once for
each device that you have installed in your systen.
See also about btusdf() (page 144) for more
alternative devices.

When you called btusiz() or btulsz(), you specified
the total number of channels in the first parameter
"nchan". btuitz() initialized the data structures
for that many channels, numbered 0 to nchan-1. Now
you will use btudef() to associate those channels
with actual hardware. The following example (in C)
illustrates a typical initialization sequence for
one each of the Galacticomm Breakthrough Models 16,
4, and 2408 and a Hayes-compatible modem on COMI:

btuitz(malloc(btulsz(40,128,1024)));
btudef (0,0x2F0,16); /* Define Model 16 at 2F0 (hex) */

btudef(16,0x2F2,4); /* Define Model 4 at 2F2 (hex) */
btudef(20,0x2F4,8); /* Define Model 2408 at 2F4 (hex) */
btudef (28,0x2F8,1); /* Define 1 Hayes modem *x/
/* on a COM2 port at 2F8 (hex) */
btudef(29,0x3F8,8); /* Define 8 Hayes modems in a */
/* GalactiBox, each at the COM1 */
/* port address of 3F8 (hex) */

For Galacticomm Breakthrough cards, the "sport"

parameter identifies the I/0 base address for the
card, as set on the card’s DIP switches. Refer to
the Installation Manual for your particular model.

GSBL-82 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btudef

For hardware on the standard serial ports COM1 and
CcoM2, you should use the following values for the
"sport" parameter:

CoMl 0x3F8 CoM3 0x3E8
coM2 0x2F8 comé 0x2E8

btudef() can discriminate between the three
categories of hardware: HAYES, UART, and XECOM (see
page 7). If it fails to find a Galacticomm
Breakthrough Model 16 or 4 at the base address
"sport", it will look for a Model 2408 card at the
same address. Failing that, it will look for an
8250-type UART (which is used in both HAYES and UART
category hardware).

See the discussion of bturst() (page 136) for the
proper sequence of initializing a HAYES or UART
| channel.

RETURNS

-11 channel number(s) out of range: the specified
range of channels (schan to schan+n-1) is not
within the inclusive range 0 to nchan-1, where
nchan has been defined in btusiz() (page 149)
or btulsz() (page 116)

0 the specified channels were defined successfully.

CAUTIONS

The return value from btudef() only indicates
whether the mechanics of the calling sequence are
correct, not whether or not the modem or UART
hardware is working.

If you are changing the maximum data rate using
btumxs() (see page 128), you must do that before
calling btudef().

If there is no hardware at the specified address,

the channels specified will all have statuses of -10
(see btusts(), page 153). If an underpopulated card is
installed (for example, a Model 16 with 8 modems),

| then btudef()’s of the vacant modem slots will also

‘ generate a single status code -10 on those channels.

LIBRARY REFERENCE GUIDE GSBL-83



btudef

If there is no hardware at the specified address,
the channels specified will all have statuses of -10
(see btusts(), page 153). If an underpopulated

card is installed (for example, a Model 2408 with 4
modems ), then btudef()’s of the vacant modem
positions will NOT generate statuses of -10 -- those
channels will "appear" to the software to exist, but
they will never be connected to anything. That's
because the 2408 card has an 8-channel UART talking
to up to 8 modems. Whether the modems are installed
or not, the presence of the UART is all that is
sought by the reset operation.

If you have purchased the N channel version of the
Software Breakthrough, then you may only use
channels 0 through N-1 to talk to real hardware. If
you attempt to define channels N or higher, then
these channels will each have a single status code
of -10 -- as if there were no hardware on these
channels. You may still use these channels for
local emulation (described on page 125).

Don’t use btudef() on LAN or X.25 channels. Use
btusdf() instead (page 144).

GSBL-84 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btueba

SUBROUTINE NAME

btueba -- echo buffer space available, in bytes

SYNOPSIS
nbytes=btueba(chan);
int chan; channel number
int nbytes; room in the echo buffer for bytes

to echo to the user’s terminal
DESCRIPTION
This routine returns a value indicating the number
of bytes that the echo buffer for this channel can
handle before overflowing.

The echo buffer can hold up to 255 bytes. When the
echo buffer overflows, a status 252 is generated
(page 164).

RETURNS
0 echo buffer is full

1-254 echo buffer is between full and empty
255 echo buffer is empty

LIBRARY REFERENCE GUIDE GSBL-85



btuech

SUBROUTINE NAME
btuech -- set echo on/off
SYNOPSIS
err=btuech(chan,mode) ;

int err; zero means OK
int chan; channel number

int mode; 0 = disable echo
1 = enable echo (echo-plex on X.25 channels)
2 = enable echo (GSBL echo on X.25 channels)

DESCRIPTION

This routine allows input echo to be enabled or
disabled while in the ASCII input mode (page 17).
It defaults to the enabled state upon channel
initialization or reset.

Here are two typical uses for this routine: The
first is for hiding passwords: you can turn off the
echo on a channel just as the user is prompted for
his password -- then turn it back on again once the
password has been entered. In this way, prying eyes
in the user’s vicinity will not see his password
displayed on his screen.

A second use of btuech() is for half-duplex
communications, in which the user’s terminal already
echoes each keystroke that he types (therefore your
system should not echo). 1In this case, you would
simply turn off the echo as soon as a connection is
established, and leave it off for the duration (you
will need to disable the echo after each reset of
the channel with bturst(), page 136).

Echo-Plex and GSBL Echo on X.25 Channelsg

Echo-plex means that the PAD (packet assembler/
disassembler) on the user’s end of the X.25 network
does the echoing of characters. The GSBL programs
the PAD to do this using the "Q" bit, per
recommendations X.29 and X.3 (parameter 2).

GSBL echo means that the GSBL echos each input
character, just as it does with modems and serial
ports.

GSBL-86 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuech

On a non-X.25 channel, btuech(chan,l) has the same
effect as btuech(chan,2). On an X.25 channel, the
call to btuech() controls both the echo of input
from the GSBL and the echo of characters by the
user’s PAD:

value of mode

parameter Local

in call to echo from X.3 pad parameter

btuech() the GSBL? number 2 setting Echo mode
0 OFF 0 (echo off) Echo off
1 OFF 1 (echo on) Echo-plex
2 ON 0 (echo off) GSBL echo

Echo-plex can be more economical if your

packet switching network charges for data traffic
based upon the number of packets input and output.
Echo-plex saves the extra packet per user keystroke
that would result from the GSBL echoing each
keystroke. However, there are a few minor drawbacks
to echo-plex for X.25 channels:

o The input word-wrap feature enabled by btumil()
will not work well on an X.25 channel in
echo-plex mode. The GSBL will be splitting
lines on word-boundaries, but not displaying the
effects on the user’s screen as it would in GSBL
echo mode, or as it would on a non-X.25 channel.

o The maximum line length set by btumil() will not
automatically disable echo when the limit is
reached -- the user’s PAD will continue to echo
even after the GSBL stops accepting characters.

o The user backspace key erases input keystrokes
fine, but does not stop when the beginning of
the input line is reached, and may erase a
preceding prompt.

o If a user types during output to his screen
("type-ahead"), then the echo is not suspended
until the next prompt (as it is with GSBL echo
mode or with non-X.25 channels), but is mixed in
with the output.

The monitored channel, when in echo-plex mode,
specially handles monitored input and output to most
closely resemble the users screen, including the

| above mentioned drawbacks.

LIBRARY REFERENCE GUIDE GSBL-87



btuech

To achieve this:

o  Each monitored keystroke (btumks() or btumks2())
is immediately echoed to the monitor screen
buffer (for access by btumds() or btumds2()) and
to the users screen (via the GSBL's echo buffer).

© Each received character is immediately echoed to
the monitor screen buffer (for btumds() or
btumds2()).

o0 Carriage returns echoed to the monitor screen
buffer are automatically appended with line
feeds.

Note: Echo-plex is automatically suspended during
binary input (when btutrg(chan,nonzero) is in
effect) and re-enabled when ASCII input resumes
(btutrg(chan,0)).

See also page 52 regarding echo considerations for
your custom character interceptor routine, specified
by btuchi().

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS
Half-duplex communications modes are not

recommended, for reasons of user-friendliness,
flexibility, and standardization.

GSBL-88 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuend

SUBROUTINE NAME

btuend -- shut down the Software Breakthrough
SYNOPSIS

btuend();
DESCRIPTION

Prepare the PC for return to DOS. This routine must
be called as part of your exit cleanup procedure.

RETURNS
None.
CAUTIONS

1f your program has called btuitz() (initialization,
page 112), you must call btuend() before your
program returns to DOS. The Software Breakthrough
alters certain PC hardware settings for its own
ends, and these must be restored, or else the
operating system will become very confused.

Only call btuend() upon exiting your program
altogether. The Software Breakthrough routines will
no longer function once you have called btuend().

btuend() does not hang up your phone lines. You
should call bturst() for every channel you have
defined before calling btuend(). If you do not,
your phone lines may remain off-hook with the
carrier signal on, appearing to any users online at
the time that your system has "locked-up". Better
to let them think that you are rude than that your
system is malfunctioning.

LIBRARY REFERENCE GUIDE GSBL-89



btuerp

SUBROUTINE NAME
btuerp -- pass/block input bytes with errors
SYNOPSIS

err=btuerp(chan,onoff);
int err; zero means OK
int chan; channel number
int onoff; 1 = accept characters with PE/FE/CE errors,
setting the high-order bit of each
(default)
0 = ignore characters with PE/FE/OE errors

DESCRIPTION

The purpose of this feature is to give you control
over the handling of input characters received with
parity errors, framing errors, or overrun errors.

If error-passthru is enabled (cnoff = 1), then any
character received with one of these errors will
have its high-order bit set (i.e. if not already in
the range from 128 to 255 it will be brought there
by adding 128 to it). Then this new value is used
as an index into the global input-character
translation table (see btuxlt(), page 183). 1If
error-passthru is disabled (onoff = 0), then any
character received with one of these errors will be
ignored.

By default, this feature is enabled (onoff = 1).
With the default input character translation table
(page 185), this means that 7-bit ASCII characters
with parity, framing, or overrun errors, are
received as if they had nothing wrong with them:
their high bits are set, but the translate table
effectively strips them off.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-90 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuerp

CAUTIONS

when running protocols requiring 8-bit data, such as
XMODEM, you should probably disable error-passthru,
because otherwise you will not be able to
distinguish between valid received characters with
their high-order bits set and invalidly received
characters. Anyway, during XMODEM input, parity
errors are not possible, framing errors are rare,
and overrun errors are unlikely.

LIBRARY REFERENCE GUIDE GSBL-91



btuffo

SUBROUTINE NAME

btuffo -- enable receiver FIFO on 16550 UART

SYNOPSIS
err=btuffo(chan,onoff);
int err; 0 is ok
int chan; channel number
int onoff; l=enable 16-byte FIFO’s

O=disable (for exact 16450 compatibility)

DESCRIPTION

This routine enables the 16-byte FIFO’s in National
Semiconductor’s 16550 UART. This can be used to
avoid losing received characters. There can be many
diverse reasons why incoming characters could be
lost. 1If any code, such as disk-caching software,
keeps interrupts disabled for too long, for example,
then the resulting jitter in sampling can cause
characters to "fall between the cracks". If this
happens, the btuerp() routine (page 90) can allow
overrun errors to be reported as data bytes with the
high bit set (and then possibly stripped by the
translate table, page 183), resulting in double
characters (for example "frog" would turn into
ltfrrg" ) .

The 16550 UART is a pin-compatible replacement for
the 16450 UART (itself compatible with the original
8250 UART). UART stands for Universal Asynchronous
Receiver Transmitter, and is the heart of almost
all serial devices on the IBM PC and compatibles,
and is also used in most modems, internal and
external.

The 16550 UART however, has 16-byte deep first-in-
first-out queues, one in the receiver circuit and
one in the transmitter. That means that (1) the
GSBL is almost certain not to miss any incoming
characters and (2) the port can be polled less often
(see page 128). To enable this FIFO feature, call
btuffo with a 1 for the onoff parameter.

GSBL-92 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuffo

btuffo() has no effect on 8250 or 16450 UARTs.
It will return -18 to let you know they’re not
16550's.

btuffo() has no effect on XECOM, LAN, or X.25
category hardware (it always returns 0).

| x.25 |

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
-18 channel has an 8250 or 16450 UART on it
0 either the channel does not have an 8250-type UART
on it, or it has a 16550 type UART on it, and the
FIFO mode has been set

CAUTIONS

Ccalling btuffo() on a channel with a 16550 UART can
cause you to lose any characters that are in the
FIFO transmitter or receiver circuitry at the moment
that you call btuffo().

On a non-hardware channel that was defined using
btudef() (or btusdf() with chtype=0), btuffo() will
always return 0. On a non-hardware channel that was
defined using btusdf() with chtype=3 (8250), the
btuffo() return value is undefined. See page 144
for more about btusdf(), or page 82 for btudef().

LIBRARY REFERENCE GUIDE GSBL-93



btuhcr

SUBROUTINE NAME

btuhcr -- set the hard-CR character (for output

wordwrap)
SYNOPSIS
err=btuhcr (chan, harder);
int err; zero means OK
int chan; channel number
char hardcr; hard-CR, translated to ODH
on output
DESCRIPTION

The "hard" carriage return is an output character
that is unconditionally converted into an ASCII <CR>
(carriage return). This occurs during ASCII output
mode, when output word wrap is in effect. ASCII
cutput mode, discussed on page 19, is performed
using btuxmt() (page 189). Output wordwrap is
controlled by btutsw() (page 172).

The hard carriage return defaults to ASCII <CR> (13
decimal) when a channel is initialized or reset,
which is to say that <CR>’s are passed through
unchanged.

By default, all <CR>'s are also appended with <LF>’s
on output. This feature is controlled by btulfd()
(page 114).

You can think of a hard CR as representing "end of
paragraph" if you have output wordwrap enabled
Usually the default value of 13 will be fine, but
there may be cases in which you want to use some
printable character, such as "@" or "<", to indicate
paragraph boundaries.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-94 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuhdr

SUBROUTINE NAME
btuhdr -- Capture information on X.25 or LAN channel
SYNOPSIS

err=btuhdr (chan,nbytes,buffer);

int err; zero means OK

int chan; channel number

int nbytes; number of bytes to capture

char *buffer; where to put them
DESCRIPTION

This routine can be used to capture the contents of
special internal data structures for the channel.
The routine is only available with the Advanced LAN
Option or with the X.25 Software Option

The nbytes parameter should be even (if odd,
btuhdr() will only copy nbytes-1 bytes).

Here are some useful values of nbytes for LAN
channels with GSBL/LAN:

46 for most recent listen ECB

76 for most recent listen ECB + listen IPX header

88 for most recent listen ECB + listen SPX header

176 for most recent listen ECB + listen SPX header
+ send ECB + send SPX header

ECB’s used by the GSBL

The ECBs (Event Control Blocks) used by the GSBL are
46 bytes long.* This includes the 42-byte structure
defined by Novell for an ECB with one fragment
descriptor, plus 4 bytes used internally by the

| GSBL.

LIBRARY REFERENCE GUIDE GSBL-95



btuhdr

The contents of this ECB can be found in the
"ecbgsbl" structure in IPX.H:

struct ecbgsbl { /* Event Control Block (for use with GSBL btuhdr()) */
void *link;
void (*esr)(); /* event service routine */
char inuse; /* D=not in use FE=listening FF=sending */
char complt; /* D=good, nonzero=command-specific error code */
int socket; /* sending socket (hi-lo) */
char ipxwsplé4]; /* 1PX workspace */
char drviwsp[12]; /* driver workspace */
char immnod(6); /* immediate node address */
int frgent; /* fragment count (lo-hi) */
void *frgadr; /* address of first fragment */
int frgsiz; /* size of first fragment (lo-hi) */
int prtseg; /* protected mode segment (GSBL-specific usage) */
int chanx2; /* channel number * 2 (GSBL-specific usage) */

X

Local Network/Node Address
After calling btusdf() for a channel group, btuhdr()

can be used to find the local network/node address
of the machine on which the GSBL is running. It
will reside in the dstnet and dstnod fields of the
listen IPX header buffer. This occurs even before
any packets are received, and offers your program
the first opportunity to determine your local node
address. (If your computer never logs into a file
server, this information might not be available for
the first minute or so of operation.)

Note that the IPX/SPX header part of this
information is redundant in raw packet mode -- you
always get the entire packet in the input buffer.

Here are some useful values for nbytes when calling
btuhdr() on X.25 channels:

2 for cause and diagnostic of last clear packet
(see about status 21 on page 156)

52 for cause and diagnostic, plus information
about the last received X.29 string (see
about status 24 on page 156)

GSBL-96 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuhdr

Here is the full 52-byte structure for the data
captured by btuhdr() on an X.25 channel:

struct x25hdr { /* X.25 info from btuhdr() 7
char cause; /* clear packet cause L7
char diag; /* clear packet diagnostic *
char x29num; /* nunber of parameters in x3list */
char x29flg; /* flags, see below L
struct x3list { /* array of up to 24 X.3 pairs: */

char par; [/* parameter nurber *r
char val; ¥ o value )
) x3list[24];
¥
/* Masks for x29flg flag bits: *f
#define X3SET 0x02 /* request to set X.3 values */
#define X3READ Ox04 /* request to read X.3 values )

#define X3MEW 0x80 /* new X.3 message has been rec'd */
#define X30VF 0x40 /* more than 24 parameters rec'd */

Each incoming clear packet generates a status 21
(page 156), and comes with a cause and a diagnostic
field. As you can see above, you can obtain these
values with btuhdr().

Calling btuhdr() clears the x29flg&X3NER flag. Each
received X.29 string sets X3NEW. So, if the X3NEW
flag is set, then a new X.29 string has been
received since you last called btuhdr(). Incoming
X.29 strings are also heralded by a status 24

(page 156).

all other flag bits, the x29num field, and the
x3list array are from the most recently received
X.29 string. The X30VF flag indicates that more
than 24 parameter/value pairs were in the last
incoming X.29 string.

An incoming X.29 string means that the other DTE on
the X.25 network is trying to query (X3READ), set
(X3SET), or both set and query (X3READ+X3SET) your
X.3 parameters. Obviously this DTE thinks it is
talking to a PAD. To respond to a query as if you
were a PAD, you can call btux29() (page 179) with
a message code of 0 (meaning query-reply).

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-97



btuhit

SUBROUTINE NAME

btuhit -- Hook into a COM port interrupt and use it to
invoke channel servicing

SYNOPSIS

err=btuhit(irqno);

int err; zero means OK

int irgno; 2-7 IRQ number to intercept
DESCRIPTION

The GSBL is normally based on timed polling of all
ports. This function can be used to make the GSBL
instead take its cue from the UART interrupts of a
very limited number of serial ports (typically 1 or
2, but possibly up to 6).

The most common practical values for irqno will be 3
and/or 4. You can call btuhit() on as many of the
IRQ numbers 2-7 as you wish, but only once per IRQ
number :

btuhit(3);
btuhit (4);

Normally you wculd use this feature in a multi-
tasking environment such as Windows or 0S/2.

CAUTIONS
btuhit() can only be used when the GSBL has been
initialized with btuitm() (page 111), not with
btuitz() (page 112).

Only one port per IRQ line can be serviced using
this schenme.

RETURNS
=20 irgno is not 2,/3/4/5/6/7, or btuitm() was not

used to initialize (see page 111)
0 all is well

GSBL-98 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuhpk

SUBROUTINE NAME

btuhpk -- Handle keystrokes during screen-pause mode

SYNOPSIS
err=btuhpk (chan,hpkrou) ;
int err; zero means OK
int chan; channel number
int (*hpkrou)(); pointer to function to be called

rc=(*hpkrou) (chan,c); the character interceptor routine
during screen-pause mode

char rc; O=ignore
l=next page
2=continue nonstop
int chan; channel number
char c; character received
DESCRIPTION

First, a channel goes into screen-pause mode when:

1. More than N lines of text have been output
(see the cnt parameter of the btuxnf(chan,
xon,-xoff,cnt,stg) form of btuxnf() on
page 192).

2. A special pause-character defined by
btupbc() has been transmitted (page 133)
and printable ocutput has been transmitted to
the user since the last time he hit Return.

3. A clear-screen code -- either an ASCII
formfeed (Ctrl-L, 12 decimal) or an ANSI
clear-screen sequence (Esc-[-2-J) -- can
also trigger a pause because btuxmt() will
insert the btupbc() pause character
immediately before it.

After a channel goes into screen-pause mode, each
character received triggers a call to the hpkrou
routine, which may be coded in C. In other words:
you will use btuhpk() to identify that the hpkrou
routine will handle each character received on any
channel during screen-pause mode.

There are several functions that can be implemented

by the hpkrou routine, based on the keystroke(s)
received during screen-pause mode. You can compose

LIEBRARY REFERENCE GUIDE GSBL-99



btuhpk

a very short (e.g. 40-character) menu of these
functions in the stg message of the -xoff form of
btuxnf(). Within the hpkrou routine:

1. To handle a "continue" key, just return 1.
2. To handle a "go nonstop" key, return 2.

3. To handle an "abort" key, you must inform
your mainline program. For example inject a
status 7 (this is what happens in The Major
BBS, for example) and have the mainline
program handle the status by clearing output
using btuclo(), and changing states (to stop
stuffing the output buffer).

The channel remains in screen-pause mode when you
return 0. Otherwise, screen-pause mode ends and
output resumes.

The character handed off to the hpkrou routine is
not automatically echced, but you could use chiout()
to echo it if you wish.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

See also page 51 for cautions relating to
interrupt-called functions. Design of the "hpkrou"
routine is fraught with pitfalls. Don’t design
lengthy complex code to run at interrupt level.
Don’t invoke DOS (because it is not reentrant). You
may use the special chixxx() routines (page 47), but
not any other Breakthrough Library routines. Beware
of data "skewing", since a real-time interrupt may
occur between any two machine-language instructions
of your mainline code.

GSBL-100 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuhwh

SUBROUTINE NAME

btuhwh -- enable hardware handshaking using RTS/CTS

SYNOPSIS
err=btuhwh(chan, inpcut);
int err; zero means OK
int chan; channel number
char inpcut; input buffer byte count cutoff point

(or 0 to disable handshaking)

DESCRIPTION

By default, hardware handshaking is disabled, so
that the cables you use to connect serial ports to
modems or terminals can be as simple as possible
(ground, receive, transmit, carrier-detect, and
data-terminal-ready). However with today’s
high-speed modems, hardware flow may be necessary
for your system. The btuhwh() function, when called
with a nonzerc "inpcut" parameter has two effects:

1. A high-to-low transition on the CTS
(clear-to-send) input signal will inhibit
transmission of output data until CTS goes high
again.

2. The "RTS" (request-to-send) output signal will
be asserted only when there are less than
"inpcut" bytes waiting in the channel’s input
buffer. NOTE: this use of RTS is not
compatible with RS232-C, but is in compliance
with the current de facto standard of several
hardware manufacturers. The function of this
output signal is better described as "ready to
receive".

These features allow effortless (non-software)
throttling of data flow in both directions. Calling
btuhwh() with inpcut equal to zero restores the
default condition: CTS is ignored, and RTS is
always active,

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-101



btuhwh

CAUTIONS

The sensing of the falling edge of CTS means that if
CTS is always inactive, then there is no throttling
of the outgoing data.

GSBL-102 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuibw

SUBROUTINE NAME

btuibw -~ Input Bytes Waiting: report the number of
bytes received and waiting in the input buffer

SYNOPSIS
inpbcw=btuibw(chan);
int inpbcw; input bytes waiting, or error code
int chan; channel number

DESCRIPTION

This routine simply returns the count of bytes
currently present in the channel’s input data
buffer. This can be used to keep track of a
block-oriented input process, or to detect user
keystrokes without removing them from the input
buffer.

The total capacity of the input buffer is:
Total capacity = isiz -1

where isiz is the value of the "isiz" parameter
passed to btusiz() (page 149) or btulsz()

(page 116). Therefore the current capacity of the
input buffer is:

Current capacity = isiz - 1 - btuibw(chan)
RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 the channel number is OK, but that channel’s input
buffer is empty
N>0 this is the number of bytes waiting in the
channel’s input buffer

LIBRARY REFERENCE GUIDE GSBL-103



btuica

SUBROUTINE NAME

btuica -- input from a channel: reading in
whatever bytes are available, up to a
limit
SYNOPSIS
nbytes=btuica(chan, inbuff,siz);
int nbytes; bytes transferred (negative if error)
int chan; channel number
char *inbuff; pointer to buffer for input bytes
int siz; maximum number of bytes to get
DESCRIPTION

This routine copies whatever bytes have been

received so far into a location you specify with the
inbuff and siz paramters. The siz parameter
specifies the maximum number of bytes that btuica()
will put at inbuff. If more are available, they’11
be left in the input buffer.

The key difference between this routine and btuict()
is that btuict() always takes a prearranged number
of bytes from the input buffer (prearranged by
btutrg(), page 167) or it will take none at all.
btuica() always reads in as many as possible, up to
the siz limit.

This is the preferred method for binary input. Your
application should use it to processes incoming data
as a stream of bytes.

RETURNS

GSBL-104

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

0 the channel number is OK, but that channel’s input

buffer is empty
N>0 this is the number of bytes actually moved from
the channel’s input buffer to inbuff

THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuict

SUBROUTINE NAME

btuict -- input from a channel: by the byte count
prearranged with btutrg()

SYNOPSIS
nbytes=btuict (chan, inbuff);
int nbytes; bytes transferred (negative if error)
int chan; channel number

char *inbuff; pointer to buffer for input bytes
DESCRIPTION

Only use btuict() when you have already prepared for
the binary input method by calling btutrg() with

nbyt > 0 (see pages 167 and 17). Use btuinp() instead
(page 108) for the ASCII input method.

The routine discussed here, btuict(), checks to see
if at least "nbyt" (the trigger number) bytes have
been received in the input data buffer, and if so,
transfers them to your buffer whose starting address
you have supplied in the "inbuff" parameter. This
data is flushed from the input buffer.

If not enough bytes have been received, btuict()
transfers as many as it can, and does not flush any
of them from the input buffer. In this case, the
global variable "ictact" can be used to find out how
many bytes were transferred (see page 29).

The key differences between this routine and
btuinp() are:

1. btuict() reads in a predefined count of
characters (prespecified by btutrg()), whereas
btuinp() reads in a variable number of
characters, ending in <CR>.

2. The characters returned by btuict() are
arbitrary binary data, so they may include
embedded zeros, or any other 8-bit value.

3. btuict() does not terminate the returned buffer
contents with a zero byte, as btuinp() does.

4. Dbtuict() performs no translation or special
handling of the bytes it receives. See
page 17 for more discussion on the ASCII
versus binary input methods.

LIBRARY REFERENCE GUIDE GSBL-105



btuict

5. btuict() sets the global variable "ictact",
indicating number of bytes transferred.

RETURNS
The return value of the function:

-10 channel is not defined (see btudef(),
page 82)

-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

-2 insufficient bytes available in input buffer

N>0 length of returned input block (will be the
same as the "nbyt" value passed to btutrg()
when nbyt > 0, page 167)

The sequence of bytes at address inbuff:
the input block (the length of which you have
already specified by calling btutrg()). This
string is not O-terminated (as is the output of
btuinp()).

CAUTIONS

Normally, you should call this routine only after

btusts() has returned a status of 4

(BYTE-COUNT-TRIGGERED INPUT DATA AVAILABLE, page 154)

for the channel.

Do not call btuict() when in the ASCII input mode.

GSBL-106 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuinj

SUBROUTINE NAME
btuinj -- "inject" a status code into a channel
SYNOPSIS

err=btuinj(chan,status);

int err; zero means OK

int chan; channel number

char status; status to be injected
DESCRIPTION

This routine simulates a status condition for a
given channel. Each channel has a status "queue"
that can accumulate multiple status codes if
necessary. Those status codes are accessed by the
main program one at a time using the btusts()
routine (page 153). 1In some cases, it is handy to
be able to put status codes directly into that
queue. Then btusts() will return that code (after
it returns any others that may be pending).

Status codes 200-249 are nominally reserved for
you to define for special application-specific
purposes and insert in the status stream using
btuinj().

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-107



btuinp

SUBROUTINE NAME

btuinp -- input from channel (ASCIIZ string)

SYNOPSIS
len=btuinp(chan, inbuff);
int len; returned string length or error code
int chan; channel number

char *inbuff; pointer to buffer for input string (the
line terminator is replaced with a O-byte

DESCRIPTION

btuinp() transfers a complete input data line into
your buffer. This routine should normally be called
only when btusts() returns a status of 3
(CR-TERMINATED INPUT DATA STRING AVAILABLE). When
you call btuinp() after a status 3 has been
detected, then the received line is copied into your
buffer (inbuff) and removed from the channel’s input
buffer. The carriage return that terminated the
input line is replaced with a single byte of 0 value
in your buffer. 1In this case the "len" return of
btuinp() will always be non-negative, giving the
actual number of characters transferred (not
counting the terminating zero byte).

If btuinp() is called when btusts() has NOT returned
a status of 3 for this channel, then the "len"
return code will probably equal -1, indicating that
no CR-terminated data string exists in the buffer.
If this happens, whatever characters were available
are copied into your buffer anyway, and a zero is
placed at the end of them. These characters are NOT
flushed from the receive buffer in this case —- you
will see them again once a complete line has been
received.

You may use btutrm() (page 169) to change the line

terminator character from ASCII <CR> to some other
character.

GSBL-108 THE GALACTICOMM SOFTWARE BREAKTHROUGH



RETURNS

btuinp

The function’s return value (the variable "len", above):

-10
-11
-1

N>=0

channel was never defined (see btudef(),

page 82)

channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

a complete input line is not yet available

(no <CR> yet)

the length of the returned string (not
including line terminator nor O-terminator)

The character string (address "inbuff" in synopsis):

The input line entered by this user on this channel
(not including the line terminator, but terminated
instead by a 0-byte), is stored in the character
array pointed to by the parameter "inbuff".

CAUTIONS

Unless you are doing something unusual, you should
enly call this routine after btusts() returns a
status of 3.

Be sure that the memory area addressed by inbuff is
big enough to contain the maximum size string
anticipated (including the terminating zero).
btumil() (page 121) will set a limit on the input
length, but to be safe, you should probably expect
up to the size of the input buffer ("isiz", as
specified in btusiz() or btulsz()).

LIBRARY REFERENCE GUIDE GSBL-109



btuirp

SUBRCUTINE NAME

btuirp -- define alternate GSBL timing source
using COM1/2/3/4

SYNOPSIS
err=btuirp(comno);
int err; zero means OK
int comno; O=use real-time interrupt (8253)

l=use COM1: 03F8, interrupt 4
=use COM2: O02F8, interrupt 3
3=use COM3: O03E8, interrupt 4
4=use COM4: O02ES8, interrupt 3

DESCRIPTION

The GSBL is based on timed polling of all ports.
Normally the system timer interrupt is intercepted
and then it’s rate is multiplied by a factor
sufficient to catch all characters at the highest
baud rate.

The btuirp() routine specifies an MS-DOS
asynchronous communication port, or COM port, to use
as an alternate timing source. The port’s baud rate
and transmit interrupt are configured to provide a
regular interrupt for polling all ports.

This may be helpful in operating systems or
MS-DOS-like environments in which the 8253 timing
device is not available.

RETURNS

-17 comno is not 0/1/2/3/4, or COM port specified
is not available
0 all is well

CAUTIONS

You must only call btuirp() once, immediately
following the call to btuitz(), and coming before any
other calls to GSBL routines that also follow btuitz().

The COM port interrupts 3 and 4 are probably at a
lower priority in your system than the interrupt 0
generated by the 8253 timer. This may mean that
btuirp(l-4) will increase jitter and increase the
possibility of missed incoming characters.

GSBL-110 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuitm

SUBROUTINE NAME

btuitm -- initialize the Software Breakthrough
for use in a multi-tasking environment

SYNOPSIS
err=btuitm(region);
int err; 0 is OK
char *region; ptr to memory region (size indicated

by btusiz() or btulsz())
DESCRIPTION

This alternative to btuitz() is used to initialize
the GSBL in a multi-tasking environment, such as
Windows or 0S/2. The main differences between
btuitm() and btuitz() are:

1. btuitz() will hook the GSBL into the timer
interrupt IRQ0 (CPU interrupt 08). At each
timed interrupt, all channels will be serviced.

2. btuitm() does not hook into the timer interrupt.
Instead, it’s left up to you to call btuhit()
(page 98) to explicitly designate which of
several interupts to hook into, IRQ2 to IRQ7
(CPU interrupts OA through OF hexadecimal).

RETURNS
0 all is well
-16 region pointer parameter is NULL (all zeros)
-15 memory allocation error
-19 protected mode memory tiling failed
CAUTIONS

See starting on page 112 for the descriptions and
cautions associated with btuitz().

LIBRARY REFERENCE GUIDE GSBL-111



btuitz

SUBROUTINE NAME

btuitz -- initialize the Software Breakthrough

SYNOPSIS
err=btuitz(region);
int err; 0 is OK
char *region; ptr to memory region (size indicated

by btusiz() or btulsz()) (if using
PBRKTHU.LIB, see caution below)

DESCRIPTION

This routine initializes the Software Breakthrough
package. btuitz() must be called after either
btusiz() or btulsz(), and before any other routine
in the Software Breakthrough library. See line 7 of
the example program on page 196 for an example of
using btuitz(). The "region" parameter must be a
pointer to a memory region set aside for

Software Breakthrough’s exclusive use. The size of
this region, in bytes, must be equal to the value
returned by either btusiz() or btulsz(), whichever
was previously called. Use btusiz() if the size of
memory you will need is less than 64K bytes. Use
btulsz() if more, or if you are not sure.

If you are using the PBRKTHU.LIB version of the GSBL
then btuitz() will attempt to "tile" the dynamic
memory region into nchan+l segments of equal length,
with consecutive selectors. btuitz() will call the
services for doing this. The pointer passed to
btuitz() must point to a region capable of being
tiled, namely it must have an offset of 0. Here is
an example of how you could call btuitz() in the
PBRKTHRU.LIB flavor of the GSBL:

long nbytes;
char *region;
union REGS regs;

nbytes=btulsz(64,256,4096);
regs.x.ax=0xE800;

regs.x.cx=nbytes»>>16;
regs.x.dx=nbytes&0xFFFF;
int86(0x21,&regs,&regs);

region=(char *)(((long)regs.x.ax)<<16);
btuitz(region);

GSBL-112 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuitz

RETURNS

0 all is well
-16 region pointer parameter is NULL (all zeros)
-15 memory allocation error
-19 protected mode memory tiling failed

CAUTIONS

This routine assumes that no errors had been
reported by btusiz{) or btulsz() (whichever you
used), -- in particular, that btusiz() or btulsz()
(pages 149,116) had not returned an error code

and that your dynamic memory allocator, if any, was
able to allocate a block of the requested size.

This routine must be called exactly once at the
beginning of execution. The routine btuend() must
be called before btuitz() can be called again.

If using protected mode, the "region" pointer passed
to btuitz() must have an offset portion of 0 and be
based upon a selector capable of being "tiled" by
the GSBL using operating system calls.

LIBRARY REFERENCE GUIDE GSBL-113



btulfd

SUBROUTINE NAME

btulfd -- set linefeed character (what follows
every carriage return)

SYNOPSIS
err=btulfd(chan,lfchar);
int err; zero means OK
int chan; channel number
char lfchar; > 0 character to output after each

carriage return (defaults to 10,
the ASCII linefeed character)
= 0 disabled

DESCRIPTION

This routine enables automatic generation of
linefeeds after carriage returns during the ASCII
cutput mode (page 19).

There is a lack of standardization in communications
today regarding whether a "carriage return" also
implies advancing to the next line or not. On some
terminals, displaying a CR (ASCII code 13) causes
the cursor to merely return to column 1 of the
current line, while on others, it also moves the
cursor down the screen one line, or scrolls the
screen, or advances the paper as the case may be.

The default upon channel initialization or reset is
to assume the former: that is, that an explicit LF
byte (ASCII code 10) is necessary following each CR
in order to move on to the next line. However, this
will cause lines to appear double-spaced under some
conditions. You can eliminate the LF, or replace it
with some other ASCII code, using the btulfd()
routine.

The btulfd()-defined linefeed character also has a
minor effect in ASCII input mode: after a carriage
return (defined by btutrm()) is echoed, the linefeed
character is also echoed.

RETURNS
-10 channel is not defined (see btudef (), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-114 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btulok

SUBROUTINE NAME

btulok -- set input lockout on/off

SYNOPSIS

err=btulok(chan,onoff) ;

int err; zero means OK

int chan; channel number

int onoff; 1 = lockout, 0 = remove lockout
DESCRIPTION

Allows a channel’s input to be locked out. You
might use this in a "deaf good-bye" scheme. This is
a log-off sequence in which you do not want the user
to be able to throttle output (via XOFF, ref
btuxnf(), page 192), or to issue further commands,
during the output of a final message.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-115



btulsz

SUBROUTINE NAME

btulsz -- Size of dynamic memory needed (long version,

used when more than 64K bytes are needed)

SYNOPSIS
lsiz=btulsz(nchan,isiz,osiz);
long lsiz; total size needed, in bytes
int nchan; number of channels to allow for
int isiz; input data buffer size per channel
int osiz; output data buffer size per channel
DESCRIPTION

Calculates the size of the memory region needed by

the

Software Breakthrough package. Either this

routine or btusiz() must be called prior to calling
btuitz() to initialize the system.

The

input and output data buffer sizes specified

must be integral powers of two (128, 256, 512, 1024,
etc). The actual number of bytes that each buffer
can hold will be 1 less than the size you specify.

For

example, if you specify an input data buffer

size of 128, then blocks of up to 127 characters at
a time may be input without overflowing.

This routine specifies the total number of channels
you will support, and the sizes of the input and
output buffers associated with each channel. This
can be done in two ways:

1.

GSBL-116

If the language you are using supports dynamic
memory allocation (this is usually called a
"heap" or a "pool"), you can simply pass the
return value of btusiz() or btulsz() to your
allocator, specifying the number of bytes you
want to allocate. This is the preferred method.

THE GALACTICOMM SOFTWARE BREAKTHROUGH



btulsz

2. If you have no capability for dynamic memory
allocation, and you must allocate all your data
structures before your program runs, this is
what you can do: write a separate little test
program to call btusiz() or btulsz() with the
appropriate parameters and simply print out the
result. This is the number of bytes that the
Software Breakthrough will need. Then create a
fixed-length array of this size in the main
program (the one that will be actually doing the
communications). If you do this, you STILL must
call btusiz() or btulsz() in your main program
just before you call btuitz().

In either event, the address of a memory region this
many bytes long must be passed to btuitz().

RETURNS

N »>= 0L This is the size, in bytes, of the memory
region needed by the Software Breakthrough
-1L  Error: one of the buffer size parameters is
not an integral power cof two

CAUTIONS

Even when using method 2 above, either btusiz() or
btulsz() must be called before calling btuitz().
There is no other way to inform the Software
Breakthrough of the total number of channels and
of their buffer sizes.

Method 1 is preferred over method 2. Under method
2, the size test procedure must be redone every time
you receive an update to the Software Breakthrough,
while relinking is all that is required under method
1. You will use Method 2 only when you require
static memory (that is, when you cannot use
dynamically allocated memory).

On LAN channels, input buffers and cutput buffers
should usually be of sufficient size to accommodate
full packet contents (546 bytes for IPX channels,
534 bytes for SPX channels). If either buffer is
smaller than a full packet, then even SPX channels
cannot necessarily be guaranteed against data loss
(unless you are sure that the main program won't
require it).

LIBRARY REFERENCE GUIDE GSBL-117



btulsz

Be sure to declare btulsz() as a function returning
a long (32-bit) integer in one of the variable
declaration sections of your C-language calling
program, for example:

main()

{
int i,3,k;
char *farmalloc();
long btulsz();

btuitz(farmalloc(btulsz(64,1024,2048)));

Btuend();

Note: farmalloc() is a library routine of Borland’s
Turbo C compiler. You will need a memory allocation
routine, like this one, that accepts a long-integer
parameter.

GSBL-118 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumds

SUBROUTINE NAME

btumds —- get next displayed character from the
monitored channel (as specified by btumon(),
see page 125)

SYNOPSIS

dspchr=btumds();
int dspchr; character that was output or
echoed (0 if there aren’t any)

DESCRIPTION

Returns the next buffered output character from the
monitored channel, or returns 0 if the display
monitor buffer is empty. Use btumon{) (page 125)
to select the monitored channel.

RETURNS

0 the monitor-output buffer is empty
dspchr > 0 the next character from the monitor-output buffer

CAUTIONS

When you are monitoring a channel, be sure to call
this routine often enough that the monitor-output
buffer will not overflow (it can hold up to 2047
characters). Also, when you do get around to
calling this routine, we recommend that you call it
repeatedly until it returns 0, to flush out its
buffer.

LIBRARY REFERENCE GUIDE GSBL-119



btumds2

SUBROUTINE NAME

btumds2 -- get next displayed character from the

monitored channel (as specified by btumon2(),

see page 127)

This function is a clone of btumds(), for emulating
a second channel.

SYNOPSIS
dspchr=btumds2();
int dspchr; character that was output or
echoed (0 if there aren’t any)
DESCRIPTION
Returns the next buffered output character from the
monitored channel, or returns 0 if the display
monitor buffer is empty. Use btumon2() (page 127)
to select the monitored channel.

RETURNS

0 the monitor-output buffer is empty

N>0 the next character from the monitor-output buffer

CAUTIONS

When you are monitoring a channel, be sure to call
this routine often enough that the monitor-output
buffer will not overflow (it can hold up to 2047
characters). Also, when you do get around to
calling this routine, we recommend that you call it
repeatedly until it returns 0, to flush out its
buffer.

GSBL-120 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumil

SUBROUTINE NAME

btumil -- set maximum input line length
set input word wrap on/off

SYNOPSIS
err=btumil (chan,maxinl);
int err; zero means OK
int chan; channel number

int maxinl;

if > 0 then input word wrap is disabled and "maxinl"
is the maximum input line length

if = 0 then input word wrap is disabled and there is
no limit to the length of an input line (see
status 251, page 164).

if < 0 then input word wrap is enabled and
abs(maxinl) is the maximum input line length.

DESCRIPTION

This routine may be used to restrict each line of
input data to a specified field width. If a user
should attempt to type more than the limit of
characters on a single line, then characters after
the limit will neither be stored in the input
buffer, nor echoed back to the user (but status
251’s will be generated).

In interactive applications, you often want to
restrict the length of a user’s input line -- maybe
you only have 15 characters in which to store his
name. Rather than accept data that is too lengthy,
and truncate it after the user has hit RETURN, it is
nicer for the user to "feel" the restriction while
he is typing. Then he can backspace and retype some
kind of abbreviation.

This routine also selects the input word wrap
feature. To turn it on, make maxinl the negative of
the screen width. For example, if maxinl is -79,
then a user with an 80-column wide screen may type
electronic mail without worrying about the right
margin. Note: the last column should never
actually be used, to prevent the display device from
auto-scrolling. For example, if maxinl = -79, then
word wrapping kicks in upon typing the 80th
character of the line -- so that each line can be no
longer than 79 characters.

LIBRARY REFERENCE GUIDE GSBL-121



btumil

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

GSBL-122 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumks

SUBROUTINE NAME

btumks -- simulate a keystroke on the monitored
channel (as specified by btumon(), see
page 125)

SYNOPSIS

btumks (kyschr) ;
char kyschr; simulated-input character

DESCRIPTION

Simulates a keystroke on the user’s terminal. The
"kyschr" character is placed into the receive buffer
just as if it had been received from the channel.
This can be used to "parallel" the system operator’s
keyboard with that of the monitored user.

RETURNS
None.

CAUTIONS
Use of key macros or other means of rapidly issuing
large blocks of keystrokes should be avoided with
this routine, since the input-keystroke buffer can
hold only 15 entries.
This routine has no effect if btumon() (page 125)

has not been called, or if it was last called with a
parameter of -1.

LIBRARY REFERENCE GUIDE GSBL-123



btumks2

SUBROUTINE NAME

btumks2 -- simulate a keystroke on the monitored
channel (as specified by btumon2(), see
page 127)

This function is a clone of btumks(), for emulating
a second channel.

SYNOPSIS

btumks2 (kyschr);
char kyschr; simulated-input character

DESCRIPTION

Simulates a keystroke on the user’'s terminal. The
"kyschr" character is placed into the receive buffer
just as if it had been received from the channel.
This can be used to "parallel" the system operator’s
keyboard with that of the monitored user.

RETURNS
None.

CAUTIONS
Use of key macros or other means of rapidly issuing
large blocks of keystrokes should be avoided with
this routine, since the input-keystroke buffer can
hold only 15 entries.
This routine has no effect if btumon2() (page 127)

has not been called, or if it was last called with a
parameter of -1.

GSBL-124 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumon

SUBROUTINE NAME
btumon -- start/stop monitoring a channel
SYNOPSIS

err=btumon(chan);
int err; zero means OK
int chan; channel number
(-1 to disable monitoring)

DESCRIPTION

btumon() sets up a specific channel for
"monitoring", which means that each character
transmitted to the channel can be obtained by
calling btumds(), and you can simulate input from
the channel by calling btumks(). The monitoring
capability can be turned off by passing -1 to
btumon( ).

The three routines btumon(), btumds(), and btumks()
are designed for use in providing the ability to
"tune in to" any desired online channel from some
sort of "master console". W®hen monitoring a given
channel, the system operator can see everything the
user of that channel is seeing: each keystroke
echoed, and each block of output text. Alsc, the
system operator’s keyboard can be placed "in
parallel" with that user’s keyboard, in the sense
that anything typed on the system operator’s
keyboard is processed exactly as though it had come
from the monitored user's keyboard -- it even echoes
to both displays.

There are two uses for the channel monitoring
feature:

1. When a user is on the channel: to "look over a
user’s shoulder" and see what he is doing, maybe
even help him along a little, by typing for him.

2. When no user is on the channel: for the system
console operator to act as a user himself, as if
he had dialed up the system with a modem and a
terminal. This is called local emulation. This
method can be used only on a channel with no
actual modem hardware.

LIBRARY REFERENCE GUIDE GSBL-125



btumon

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

GSBL-126 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumon2

SUBROUTINE NAME
btumon2 -- start/stop monitoring a channel

This function is a clone of btumon(), for emulating
a second channel.

SYNOPSIS

err=btumon2(chan) ;

int err; zero means OK

int chan; channel number (must be a non-
hardware channel), or -1 to
disable monitoring

DESCRIPTION

btumon2() sets up a specific channel for
"monitoring", which means that each character
transmitted to the channel can be obtained by
calling btumds2(), and you can simulate input from

the channel by calling btumks2(). The monitoring
capability can be turned off by passing -1 to
btumon2().

The three routines btumon2(), btumds2(), and
btumks2() are designed for use in providing the
ability to "tune in to" a non-hardware channel
from some sort of "master console".

The only use for channel monitoring with btumon2()
is when the channel is a non-hardware channel, for
the console operator to act as a user himself, as if
he had dialed up the system with a modem and a
terminal. This is called local emulation. This
method can be used only on a channel with no actual
modem hardware.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-127



btumxs

SUBROUTINE NAME

btumxs -- Set maximum data speed
SYNOPSIS
err=btumxs (bdrate) ;
int err; error return: 0=OK, -3=rate no good
unsigned bdrate; baud rate (bits per second)

Default=2400 min=300 max=38400
DESCRIPTION

This routine specifies the maximum data rate (in
bits per second) of all channels on your system.

This directly affects the rate at which all channels
are serviced. The byte rate is derived from the
baud rate (bdrate) that you specify with btumxs():

bytes per second = bdrate / 10

A 21% margin is added to this rate to get the
channel service rate:

service rate = bytes per second X 1.21

For example, with the default "bdrate" of 2400 baud,
data is expected for receiving and transmitting at
240 bytes per second. Therefore each channel is
serviced about 290 times a second.

This parameter also affects the service rate of
channels that are monitored using btumds() and
btumds2() (pages 119 and 120), even if no hardware is
connected to this channel (see use #2 on page 125).
For example, using The Major BBS by Galacticomm,
when you emulate a non-hardware channel (cone that
appears as "---—-—- " in the user matrix on the
console), the display rate is controlled by the
bdrate parameter of btumxs(). For this reason, you
may want to set the service rate higher than that
required by your hardware -- so that your emulated
screen is updated faster.

Using 16550 FIFOs

When you use 16550 UARTS, you may be able to set the
btumxs() rate even slower than the maximum baud
rate. That’s because the 16550 UARTS have hardware

GSBL-128 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btumxs

FIFOs in them and don’'t need to be polled as often.
This can save your computer a lot of processing
overhead, because it doesn’t have to poll your
channels as rapidly.

To take advantage of this, you need to distinguish
ports with 16550 UARTs from those with standard 8250
UARTs. The btuffo() routine (see page 92) returns

0 for 16550 ports, and -18 for 8250 or 16450 ports.
(It also returns 0 for XECOM or any other non-8250
based port.)

So, to figure the bdrate parameter for btumxs(),
compute the maximum of all of the polling rates that
are required for all the channel. The polling rate
required for each channel is:

o 16550 channel: the baud rate / 4
o Non-16550 channel: the baud rate

Here are some examples:

8250 port at 2400 bps  btuffo(chan,l) == 0
16550 port at 4800 bps btuffo(chan,l) == 1
btumxs (2400)

8250 port at 2400 bps btuffo(chan,l) == 0
16550 port at 9600 bps  btuffo(chan,l) == 1
16550 port at 19200 bps btuffo(chan,l) ==1

btumxs (4800)
RETURNS

0 the maximum data speed has been set
-3 bad baud rate: the bdrate parameter was not a
number between 300 and 38400
CAUTIONS

If you make the bdrate parameter smaller than the
baud rate of the fastest channel on your system, you
may lose received characters and you may be
transmitting at less than capacity.

If you make the bdrate parameter larger than the
baud rate of the fastest channel on your system, you
will be wasting CPU time servicing channels more
often than they require.

LIBRARY REFERENCE GUIDE GSBL-129



btuoba

SUBROUTINE NAME

btuoba -- Output Bytes Available: report the
amount of space (number of bytes)
available in the output buffer

SYNOPSIS
outbca=btuoba(chan);
int outbca; output buffer size, or error code
int chan; channel number

DESCRIPTION

This routine simply returns the size of the vacant
portion of the output data buffer for the specified
channel. It is intended for use in two ways
(although you may find others):

1. You can find out whether or not an output
message will fit in the space available, thereby
avoiding a status of 253 (DATA OUTPUT CIRCULAR
BUFFER OVERFLOW), and allowing your program to
take remedial action (such as outputting a beep
string to let the user know that an output block
has been lost).

2. You can find out when the buffer is empty, if
that makes a difference to you in some situation
(such as for performance monitoring, in which
you might want to get some feel for the fraction
of online time spent outputting). The output
buffer is empty when btuoba() returns a value of
osiz-1, where "osiz" is the size of the output
buffer specified in the original call to
btusiz() (page 149) or btulsz() (page 116).

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 the channel number is OK but that channel’s output
buffer is full
N>0 the number of bytes available in the channel’s
output buffer

GSBL-130 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuoes

SUBROUTINE NAME

btuces -- enable/disable Output-Empty status codes

SYNOPSIS
err=btuoes (chan,onoff);
int err; zerc means OK
int chan; channel number
int onoff; 1 = generate a single status 5 when

the output buffer becomes empty
0 = don’t generate status 5's

DESCRIPTION

You may wish to be notified when the data output
buffer goes empty on a channel, such as with
certain block-oriented protocols like XMODEM. By
default, no status 5 (see page 155) is generated.
This routine turns the generation of this status on
or off.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

If the output buffer on the channel is already empty
when this routine is called, no status 5 is
generated. The test for generation of status 5 only
occurs as the channel transitions from the not-empty
state to the empty state.

LIBRARY REFERENCE GUIDE GSBL-131



btuolk

SUBROUTINE NAME

btuolk -- set output pausing on/off

SYNOPSIS

err=btuolk (chan,onoff);

int err; zero means OK

int chan; channel number

int onoff; 1 = pause, 0 = resume, pause off
DESCRIPTION

This routine pauses a channel’s output until the
pause is turned off by btuolk(). You might use this
in some scheme to throttle output. For example, to
implement a file transfer protocol that uses
XON/XOFF in binary mode, your mainline program will
need to process these characters and pause or resume
output.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-132 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btupbc

SUBROUTINE NAME

btupbc -- set screen-pause character
(pauses screen when in output stream)

SYNOPSIS

err=btupbc(chan,pausch) ;

int err; zero means OK

int chan; channel number

char pausch; pause character (0 to disable)
DESCRIPTION

When the pausch character is transmitted to the
user in ASCII output mode, output pauses and the
channel goes into the screen-pause mode (page 99).
Clear screen characters (ASCII formfeed and ANSI
Esc-[-2-J) are automatically preceded by the pause
character when btuxmt() stuffs them into the output
buffer. The Major BBS uses Control-T for the pause
character.

Characters received during the screen-pause mode are
handled by a routine identified by btuhpk(). That
routine specifies how to get out of screen-pause
mode .

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-133



btupmt

SUBROUTINE NAME

btupmt -- set prompt character

SYNOPSIS

err=btupmt (chan,pmchar);

int err; zero means OK

int chan; channel number

char pmchar; prompt character (0 to disable)
DESCRIPTION

This routine selects automatic prompting of the user
with a single character. 1In this example, ">" is
the prompt character, and the user’s keystrokes are
shown in boldface:

System ready

>WHAT TIME IS IT?

Oh, about half past eight

>Download the marketing report.

OK, the marketing report will be downloaded
when you log off. (Type "NOR" to do it now.)
>

Even when enabled, prompting is only active during
the ASCII output mode (page 19) -- that is, when
using btuxmt() to transmit (page 189).

The prompt character is automatically sent each time
a transition is made from an outputting state to an
inputting state. To disable this feature (the
default condition), call btupmt() with a "pmchar"
value of 0.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-134 THE GALACTICOMM SOFTWARE BREAKTHROUGH



bturep

SUBROUTINE NAME

bturep -- report channel statistics

SYNOPSIS

value=bturep(chan,statid);

long value; value of the statistic
int chan; channel number
char statid; 0 - count of characters (LAN, X.25)
1 - count of packets (LAN, X.25)
2 - count of overruns (8250)
3 - count of parity errors (8250)
4 - count of framing errors (8250)

DESCRIPTION

These statistical values are set to zero by bturst()
(page 136), or to any value by btuset() (page 147).

|

The output of this function is only defined for X.25
and LAN channels when statid is 0 or 1.

A count of characters and packets that have been
transferred in both direction since channel reset
is reported.

The output of this function is only defined for
8250-type UART channels when statid is 2-4. This
function reports a running count of overrun, framing
and parity errors in the UART of the channel.

Overrun errors in non-16550-FIFO mode can mean one
or more characters lost per error. In 16550 mode
(page 92), up to 16 characters or more can be lost
per overrun error.

Framing errors usually mean baud-rate
incompatibility or line noise. Technically they
result from the lack of a high (mark) state when a
stop bit was expected.

RETURNS

bturep() returns the current long integer value of
the statistic.

LIBRARY REFERENCE GUIDE GSBL-135



bturst

SUBROUTINE NAME
bturst -- reset a channel
SYNOPSIS

err=bturst(chan);
int err; 0 = OK (XECOM hardware)

1 = OK (HAYES or UART hardware)

2 = OK (X.25 hardware)

3 = OK (LAN hardware)

less than zero means error (see page 139)
int chan; channel number

DESCRIPTION

bturst() completely resets a channel, in both
hardware and software, to its initial default
conditions. This is also the recommended method for
"hanging up", since the default condition of the
switch hook is on-hook (disconnected).

Note: when btudef() (page 82) is used to define
a channel or group of channels, the bturst() reset
operation is automatically performed on these
channels.

Re recommend that as part of resetting any channel
with HAYES category hardware, including the
Galacticomm Model 2408 card, you issue the following
sequence of instructions, selecting certain
non-default options on which our interface scheme
depends:

bturst(chan);

btulcok(chan,l);

btuoes(chan,l);

btuech(chan,0);

btubrt(chan,2400);

btuxmt (chan, "ATE0S0=1S2=1&C1&D2\r" ) ;
btucli(chan);

. wait for status 5 from this channel . . .
btulok(chan,0);
btuces(chan,0);

This procedure is used in the TELCONH.C example
program on page 196.

GSBL-136 THE GALACTICOMM SOFTWARE BREAKTHROUGH



bturst

This should also be done to every channel after it
is defined (see btudef(), page 82). The rationale
of each of these statements will now be explained:

bturst(chan);
Reset the channel.

btulok(chan,l);
Lock out input from the channel. This inhibits
trash incoming characters from inhibiting
transmission of the upcoming command string.

btuoes(chan,l);
This enables status code 5 generation when the
transmit buffer goes empty. This will be used
to detect when the command string completes
transmission to the modem.

btuech(chan,0);
This turns off the echo in the Software
Breakthrough (a different echo than that of the
Hayes-compatible modem). For interactive
applications, you will turn your echo on again
after in incoming call has been answered.

btubrt (chan,2400);
This sets the baud rate of the UART that
communicates with the modem. 2400 is the
default baud rate, and if that’s what you
want, you can omit this statement. But if
you want some other rate during communication
with the modem in command mode, then set that
rate here.

btuxmt (chan, "ATE0S0=152=1&C1&D2\r") ;
This command string selects various modes of the
modem. "AT" is the standard prefix to all Hayes
protocol commands.

EOQ Turns output echo off. Without this, the
Hayes-compatible modem would echo back to
us every character that we sent it.
Certainly not what we want.

s0=1 Enables auto-answer mode, so that incoming
calls are automatically answered and presented
with answer-carrier. You may wish to omit
this setting if you have phone lines that you
don’t wish to answer.

LIBRARY REFERENCE GUIDE GSBL-137



bturst

S2=1 Selects ‘\1’ (ASCII 01, control-A) as the
escape character. Per the Hayes modem
control standard, transmitting the escape
code three times (between 1 second
pauses) results in switching from the
online to the command mode. The default
escape character is 43 (’'+'). Since we
do not want users to be able to issue the
escape sequence, we make the escape
character something that cannot be
echoed back. Note that the default
translate table (page 185) has ASCII 0l’s
translated to 00 (ignored).

&Cl  Makes the modem DCD output indicate the
presence of data carrier.

&D2  Makes the modem DTR input reset the modem.

\r This is the C-language notation for a
carriage return.

The &C1 and &D2 commands may not be desirable or
necessary on certain hardware. See your modem manual
for details.

btucli(chan);
This instruction discards any trash input
characters that may have been received up to
this point.

. wait for status 5 from this channel . .

To continue the reset procedure, we must wait
for the status code 5 that indicates that the
UART on this channel has completely transmitted
the command sequence to the modem. 1In a
multi-user program, remember that other channels
may require servicing in this interval. You
must structure your code such that all other
channels will continue to be serviced, and when
this status 5 does come in, the reset procedure
will continue. The program on page 196 does
this.

btulok(chan,0);
Remove input lockout.

btuoes(chan,0);
Turn off status code 5 generation

GSBL-138 THE GALACTICOMM SOFTWARE BREAKTHROUGH



bturst

RETURNS

-10 channel is not defined (see btudef(), page 82),
or no UART has been detected at the I/0 address
where it was defined. If you have purchased the
N-channel version of the Software Breakthrough,
then you may only use channels 0 through N-1 to
talk to real hardware. If you attempt to reset
channel N or higher, then you will get this error
return code. You may still use these channels
for local emulation (page 125), however.

-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

Rl

0 means that a functional XECOM category modem
has been detected on this channel

1 means that functional HAYES or UART category
hardware has been detected on this channel

; 2 means that functional X.25 driver and PC XNet
\ hardware have been detected on this channel

3 means that a functional LAN interface has
been detected on this channel

CAUTIONS

| LAN

bturst() should always be called for each LAN
channel just before you call btuend(). This ensures
| that SPX connections are completely aborted.

LIBRARY REFERENCE GUIDE GSBL-139



bturti

SUBROUTINE NAME

bturti -- define routine to be called in real-time

SYNOPSIS

err=bturti(hertz,rtirou);

int err; zero means OK

int hertz; number of rti’s per second

int (*rtirou)(); pointer to function to be called
DESCRIPTION

This routine arranges for one single specified
subroutine to be called a specified number of times
per second. The call takes place "at interrupt
level", i.e. once your program arranges for this by
calling bturti(), you do not need to perform any
periodic maintenance, and the timing of the calls
will not be affected by other system activity such
as disk I/0 or lengthy mainline computation loops.

RETURNS

-6  too many rti calls per second (hertz is too large)
0 all is well

CAUTIONS

The "hertz" parameter may not exceed 0.12 times the
maximum baud rate specified by the btumxs() routine
(page 128), or 288 if btumxs() has not been called.

The time between rti’s is quantized into discrete
units equal to 0.12 times the btumxs()-specified
maximum baud rate. So, as the specified rti rate
approaches this maximum, the variation in intervals
between calls to the "rtirou" routine can be as much
as 100%. The average rate per second will be much
more accurate, however (closer than 0.1%).

See also page 51 for cautions relating to
interrupt-called functions. Design of the "rtirou"
routine is fraught with pitfalls., Don’t design
lengthy complex code to run at interrupt level.
Don’t invoke DOS (because it is not reentrant). You
may use the special chixxx() routines (page 47), but
not any other Breakthrough Library routines. Beware
of data "skewing", since a real-time interrupt may
occur between any two machine-language instructions
of your mainline code.

GSBL-140 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuscn

SUBROUTINE NAME

btuscn -- scan for channels in need of service
(those with nonzero status)

SYNOPSIS

chan=btusen();
int chan; channel number (0 to nchan-1)
or -1, if no channels require service

DESCRIPTION

Scans all defined channels, searching for cne with a
nonzero status. If it finds one, the number of that
channel is returned. This number will be between 0
and nchan-1, where "nchan" is the total number of
channels allocated in btusiz() (page 149) or
btulsz{) (page 116). If no channels require
service, -1 is returned, indicating that the status
queues of all channels are empty.

Note: when btuscn() reports that a channel requires
service, subsequent calls to btuscn() will resume
scanning with the channel immediately following, so
that all channels have the same priority.

This routine will most likely be the focal point of
the main program. The main loop will repeatedly
call btuscn() to find out "what to do next" —- that
is, which channel needs servicing. You could do the
same thing with repeated calls to btusts(), but
btuscn() is far more time-efficient. Also, btuscn()
gives equal priority to all channels.

The btusen() function has added purpose on LAN and
X.25 channels, including:

o Scan all channels for incoming packets, and
process

o Scan all channels with output data for the
opportunity to transmit packets

The standard functions of btuscn() apply to all
channels: to look for the next channel with a
status code to report.

LIBRARY REFERENCE GUIDE GSBL-141



btuscn

CAUTIONS

| LAN || x.25 |

On LAN and X.25 channels, must call btuscn()
reqularly. If you do not, then you will not have
| any input or output on your LAN and X.25 channels,

RETURNS
-1 no channels require service: they all have a
status of 0
N>=0 channel number of the next channel with a
nonzero status
GSBL-142

THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuscr

SUBROUTINE NAME

btuscr -- set the soft-CR character (for output

wordwrap)
SYNOPSIS
err=btuscr(chan,softcr);
int err; zero means OK
int chan; channel number
char softcr; soft-CR, becomes space once wrapped

(0 to disable soft-CR translation)
DESCRIPTION

The "soft" carriage return (see the discussion of
"wordwrap" under btutsw(), page 172) is an output
character that gets converted into a CR or CR/LF
sequence (CR/LF if you have never called btulfd())
as long as no output word wrap has taken place yet.
Otherwise, it is converted into a space (ASCII code
32). It defaults to the disabled condition
(softcr=0) when a channel is initialized or reset.
Soft carriage returns are processed by btuxmt()
during transmission -- that is, they are only active
during the ASCII output mode (page 19).

Background: when output word wrap is enabled,
btuxmt () keeps track of whether or not a forced wrap
has occurred within the current paragraph. After it
has, appearances of the soft CR character are
treated exactly like spaces. Before this point,
appearances of the soft CR character are treated
exactly like carriage returns. See the example on
page 174, where the soft carriage return is set to
10 (’\n’ in C-language notation).

RETURNS
10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-143



btusdf

SUBROUTINE NAME

btusdf -- super-define channel groups

SYNOPSES

err=btusdf (schan,n,chtype,...);

int

err;

zero means OK (see below)

int schan; starting channel number

int

n;

number of channels

int chtype; channel interface type:

0 -

SNV e W
I

wildcard (auto-determine whether type 1, 2 or 3)
(this is the same as btudef())

XECOM 120x (as on Breakthrough Model 16 or 4)
XECOM 2400 (as on Breakthrough Model 2408)
8250-type UART/modem

X.25 packet switching network channels

Novell Netware IPX Direct circuit channels
Novell Netware IPX Virtual circuit channels
Novell Netware SPX channels

the remaining parameters depend
on the value of chtype:

Format of call to btusdf() Purpose

err=btusdf (schan,n,0,icaddr); same as btudef()
err=btusdf (schan,n,1,icaddr); Model 16/4
err=btusdf (schan,n,2,icaddr); Model 2408
err=btusdf(schan,n,3,icaddr); 8250-type UART
err=btusdf (schan,n,4,card,line,slcn); X.25 network
err=btusdf(schan,n,5,socket,necbs); LAN IPX Direct
err=btusdf (schan,n,6,socket,necbs); LAN IPX Virtual
err=btusdf (schan,n,7,socket,necbs); LAN SPX

int
int
int
int
int
int

ioaddr; starting port address for the

card;
line;
slcn

PC XNet card number (0-7)
PC XNet line (0=25-pin 1=15-pin)
Starting logical channel number

socket; local socket number, or O=define
necbs; number of listen ECB's to open

DESCRIPTION

You can use these symbols from BRKTHU.H for the
chtype parameter:

#define SDFANY 0  /* GSBL btusdf() argument for XECOM/UART hdw */
#define SDFX25 4  /* GSBL btusdf() argument for X.25 hardware */
#define SDFIPXD 5 /* GSBL btusdf() argument for IPX Direct hdw */
#define SDFIPXV 6  /* GSBL btusdf() argument for IPX Virtual hdw*/
#define SDFSPX 7  /* GSBL btusdf() argument for SPX hardware */

GSBL-144

THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusdf

Here is how the hardware categories compare with the
chtype parameter for various types of hardware:

Hardware
Communications hardware category chtype
Breakthrough Model 4 XECOM 1
Breakthrough Model 16 XECOM 1
Breakthrough Model 2408 HAYES 2
Hayes 2400B internal modem  HAYES 3
IBM Async adapter card UART 3
OST PC XNet card X.25 4
Novell LAN, IPX Direct LAN 5
Novell LAN, IPX Virtual LAN 6
Novell LAN, SPX LAN 7

Calling btusdf(schan,n,0,iocaddr) is exactly the same
as calling btudef(schan,ioaddr,n). The GSBL will
automatically figure out the channel type among the
Model 4,16, Model 2408, 8250 possibilities. See

page 82.

Using btusdf() with the chtype parameter value of 1,
2 or 3 will force the GSBL to treat the channel as a
Model 16/4, Model 2408, 8250 UART.

For LAN channel definition, the socket number is
specified in the sensible easy-to-use "lo-hi" order
(it gets byte-swapped into "hi-lo" order before
being handed off to Netware). See page 212 for
details on socket numbering.

The "necbs" parameter defines the number of ECB's
per channel to allocate for receiving packets. This
parameter should probably be a minimum of 2.
Maximum possible value for "necbs" is 64. Memory
overhead will be about 640 bytes per ECB per
channel. Setting the necbs parameter to 0 will
define a non-hardware LAN channel. Every channel
should have at least 2 ECBs at its disposal. You
may be able to set necb to 1 if you are defining
more than one channel in a group -- since all ECBs
for a given socket number are shared (among all the
channels that use that socket number), then
theoretically every channel will have at least 2
ECBs at its disposal.

LIBRARY REFERENCE GUIDE GSBL-145



btusdf

CAUTIONS

There is no btuudf() (un-define) for LAN or X.25
channels. Defining a LAN or X.25 channel (calling
btusdf() with chtype from 4 to 7) is "permanent" and
can occur only once for a given channel over the
run-time life of your pregram.

The only way to re-define LAN or X.25 channels is by
calling btuend() to shut down the entire Software
Breakthrough, and starting over again with btuitz().
And since you can only run btuitz() and btuend()

| once per program load, this means that LAN

| and X.25 channels can only be defined once for the

| run-time life of your program.

Defining a LAN channel group of one channel with one
ECB per channel will have undefined results.

RETURNS

0 all is OK
-11 channel number is out of range
-12 sequence error - overlapping channel groups

-13 X.25 interface not available (only returned when
chtype is 4 and you are using GSBL without the X.25
option)

-14 LAN interface not available (only returned when
chtype is 6 or 7 and you are using the GSBL without
the Advanced LAN Option)

-15 Out of memory

GSBL-146 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuset

SUBROUTINE NAME

btuset -- set and report channel statistics

SYNOPSIS
value=btuset (chan,statid,newval);
long value; value of the statistic
int chan; channel number
char statid; 0 - count of characters (LAN, X.25)
1 - count of packets (LAN, X.25)
2 - count of overruns (8250)
3 - count of parity errors (8250)
4 - count of framing errors (8250)
long newval; new value for the statistic
DESCRIPTION

These statistical values are set to zero by bturst()
(page 136). The value returned by btuset() is the
value of the statistic immediately before it gets
set to the new value. A common practice is to call
btuset() with newval=0L and use the result to keep a
separate total.

The operation of this function is only defined for
X.25 and LAN channels when statid is 0 or 1.

A count of characters and packets that have been
transferred in both direction since channel reset is
reported. For example, you could keep track of
packet traffic with code like this:

long pdelta;
static long ptotal=0L;
long btuset();

pdelta=btuset(chan,1,0L);
ptotal+=pdelta;
printf("%ld packets input/output, %ld total ! \n", pdelta,ptotal);

| The operation of this function is only defined for
‘ 8250-type UART channels when statid is 2-4.

framing and parity errors in the UART of the

‘ This function reports a running count of overrun,
channel.

LIBRARY REFERENCE GUIDE GSBL-147



btuset

Overrun errors in non-16550-FIFO mode can mean one
or more characters lost per error. In 16550 mode
(page 92), up to 16 characters or more can be lost
per overrun error.

Framing errors usually mean baud-rate
incompatibility or line noise. Technically they
result from the lack of a high (mark) state when a
stop bit was expected.

RETURNS

btuset() returns the value of the statistic
immediately before it gets set to the new value.

GSBL-148 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusiz

SUBROUTINE NAME

btusiz -- Size of dynamic memory needed (only if < 64K)
SYNOPSIS

size=btusiz(nchan,isiz,osiz);

unsigned size; total size needed, in bytes,

or 65535 if too much memory needed
(meaning you should use btulsz())

int nchan; number of channels to allow for

int isiz; input data buffer size per channel

int osiz; output data buffer size per channel
DESCRIPTION

btusiz() calculates the total size of the memory
region required by the Galacticomm Software
Breakthrough Library to manage the communication
channels. The address of a region this

big must be passed to btuitz() (page 112) to
initialize the Software Breakthrough.

1f the parameters are such that more than 65535
bytes are needed, this routine returns 65535. 1In
this case, you should use btulsz() (page 116)
instead of btusiz(), because btulsz() returns a long
integer (32-bit) gquantity.

The input and output data buffer sizes specified
must be powers of two (128, 256, 512, 1024, etc).
The actual number of bytes that each buffer can hold
will be 1 less than the size you specify. For
example, if you specify an input data buffer size of
128, then blocks of up to 127 characters at a time
(plus terminator) may be input without overflowing.

This routine specifies the total number of channels
you will support, and the sizes of the input and
output buffers associated with each channel. This
can be done in two ways:

1. If the language you are using supports dynamic
memory allocation (this is usually called a
"heap" or a "pool"), you can simply pass the
return value of btusiz() or btulsz() to your
allocator, specifying the number of bytes you
want to allocate. This is the preferred method.

LIBRARY REFERENCE GUIDE GSBL-149



btusiz

2. If you have no capability for dynamic memory
allocation, and you must allocate all your data
structures before your program runs, this is
what you can do: write a separate little test
program to call btusiz() or btulsz() with the
appropriate parameters and simply print out the
result. This is the number of bytes that the
Software Breakthrough will need. Then create a
fixed-length array of this size in the main
program (the one that will be actually doing the
communications). If you do this, you STILL must
call btusiz() or btulsz() in your main program
just before you call btuitz().

In either event, the address of a memory region this
many bytes long must be passed to btuitz().

RETURNS

0 < N <= 65534 This is the size, in bytes, of the memory
region needed by the Software Breakthrough
65535 Error: more than 65534 bytes are needed, or
either buffer size is not a power of two

CAUTIONS

Even when using method 2 above, either btusiz() or
btulsz() must be called before calling btuitz().
There is no other way to inform the Software
Breakthrough of the total number of channels and
their buffer sizes.

Method 1 is preferred over method 2. Under method
2, the size test procedure must be redone every time
you receive an update to the Software Breakthrough,
while relinking is all that is required under method
1. You will use Method 2 only when you require
static memory (that is, when you cannot dynamically
allocate memory).

On LAN channels, input buffers and output buffers
should usually be of sufficient size to accommodate
full packet contents (546 bytes for IPX channels,
534 bytes for SPX channels). If either buffer is
smaller than a full packet, then even SPX channels
cannot necessarily be guaranteed against data loss
(unless you are sure the main program won’t require
)

GSBL-150 THE GALACTICOMM SOFTWARE BREAKTHROUGH



LIBRARY REFERENCE GUIDE GSBL-151



btusts

Status | ASCII
Code rep Description
[¢] QUIET, NOTHING SPECIAL TQ REPORT
1 RING-INDICATE OR LOST-CARRIER (XECOM)
2 COMMAND EXECUTION COMPLETED OK (XECOM)
3 CR-TERMINATED INPUT STRING AVAILABLE
4 BYTE-COUNT-TRIGGERED INPUT DATA AVAILABLE
5 QUTPUT BUFFER EMPTY
6 OUTPUT ABORTED BY USER
7 (RESERVED FOR SCREEN-PAUSE/QUIT COMMAND)
11 LOST CARRIER (HAYES)
12 COMMAND EXECUTION COMPLETED (HAYES, UART)
13 INVALID BTUCMD () COMMAND (HAYES)
21 X.25 INCOMING CLEAR PACKET (END OF SESSION)
22 X.25 COMMAND OR PAUSE COMPLETED
23 X.25 INVALID BTUCMD() COMMAND CODE
24 X.25 INCOMING X.29 STRING
31 LAN SPX CONNECTION TERMINATED BY OTHER SIDE
32 LAN PAUSE COMMAND COMPLETED
33 LAN INVALID BTUCMD () COMMAND
34 LAN SPX INCOMING CONNECTION ESTABLISHED
35 LAN SPX OUTGOING CONNECTION ESTABLISHED
36 LAN SPX TERMINATION COMPLETE BY THIS SIDE
37 LAN RECEIVER ERRCR
38 LAN RECEIVED UNKNOWN OR UNEXPECTED PACKET
39 LAN CONNECTION ERROR
40 LAN GTC INPUT MODE: LOCKED OUT
41 LAN GTC INPUT MODE: BINARY
42 LAN GTC INPUT MODE: ASCII, NO ECHO
43 LAN GTC INPUT MODE: ASCII, WITH ECHO
44 LAN GTC INPUT MODE: ASCII, W/ECHO AND WRAP
49 1 XECOM DTMF 1 SENSED
63 ? XECOM INVALID COMMAND BYTE
65 A XECOM ABORTED COMMAND PREMATURELY
66 B XECOM BUSY SIGNAL SENSED (OR X.25 CALL FAILED)
68 D XECOM DIAL TONE SENSED
70 F XECCM FAILED FOR OTHER REASONS
73 I XECOM INAPPROPRIATE COMMAND
77 M XECOM MODEM CARRIER (OR X.25 CALL COMPLETED)
82 R XECOM RINGING SENSED, BUT NO ANSWER
84 g XECOM TIMEOUT (SILENCE SENSED)
86 v XECOM VOICE SENSED
118 v XECOM VOICE SENSED (BY "~A COMMAND)
200 \  RESERVED FOR YOUR
- > SPECIAL PURPOSES
249 v USING btuinj() or chiini()
250 TRANSMISSION ERROR (X.25)
251 DATA INPUT CIRCULAR-BUFFER OVERFLOW
252 ECHO OUTPUT CIRCULAR-BUFFER OVERFLOW
253 DATA OUTPUT CIRCULAR-BUFFER OVERFLOW
254 STATUS INPUT CIRCULAR-BUFFER OVERFLOW
255 COMMAND OUTPUT CIRCULAR-BUFFER OVERFLOW
=10 CHANNEL NOT DEFINED
-11 CHANNEL NUMBER OUT OF RANGE

GSBL-152

Figure 4-2: Summary of Status codes

THE GALACTICOMM SOFTWARE BREAKTHROUGH




btusts

SUBROUTINE NAME
btusts -- status of a channel
SYNOPSIS

status=btusts(chan);

int status; channel status code
int chan; channel number
DESCRIPTION

Several events can occur on your communication
channels that need your attention: an incoming call
can "ring", a user can type in his name and hit his
"enter" key. In other cases, a command that you
issue (see btucmd(), page 58) can be completed.

You will want to respond to these and other
conditions, and that is what btusts() is all about.

This routine returns the next status code from the
status buffer of the specified channel. The status
buffer is a "first-in-first-out" structure, which
simply means that btusts() gives you the status
codes in the same order in which they are generated.

Some of the status codes returned by btusts() are
reporting conditions sensed by software running in
the PC. Other conditions are sensed directly by the
individual modem. Some status codes indicate
normal, expected conditions; others indicate errors.
Each status code is discussed in detail below.

Be sure to review the CAUTIONS at the end of this
section on btusts() (page 166).

RETURNS

0 = QUIET, NOTHING SPECIAL TO REPORT
1f you use btuscn() to scan for channels that need
service, you will never see this status code.
btuscn() (page 141) identifies channels that have a

status code of anything BUT zero, and when none do,
it returns -1.

LIBRARY REFERENCE GUIDE GSBL-153



btusts

1 = RING-INDICATE OR LOST-CARRIER (BREAK)

The Xecom modem module XE1201 uses the same bit to
indicate both incoming ring and loss of carrier.
Since incoming ring can only happen when the phone
is on the hook, and loss of carrier can only happen
when it is off the hook, it is simply matter of
context to distinguish between the two. You can
always reset the channel to be sure (bturst(),

page 136).

2 = COMMAND EXECUTION COMPLETED OK (XECOM)

If the modem has not generated any status codes by
the time it finishes processing a command string
(see btucmd(), page 58), then this status code is
generated, indicating successful completion of the

command string.
3 = CR-TERMINATED INPUT STRING AVAILABLE

Indicates that a complete line of input data has
been received over a channel that is in ASCII input
mode (page 17). Use btuinp() (page 108) to
retrieve this string.

In the command mode HAYES category hardware can
indicate several conditions by way of status 3. A
subsequent call to btuinp() will retrieve a
description of the condition like "BUSY" or "NO
ANSHER" .

See page 227 about the "RING xxx CALLING xxx"
status 3 message that represents an incoming call.

4 = BYTE-COUNT-TRIGGERED INPUT DATA AVAILABLE

Indicates that the trigger count specified for this
channel (see btutrg(), page 167) has been reached, and
that a logical block of transparent-mode data is

ready for examination via btuict() (page 105).

GSBL-154 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

5 = OUTPUT BUFFER EMPTY

This status code is generated when (1) the btuoces()
routine has been called to enable it (see

page 131), and (2) the output data buffer makes a
transition from being not empty to being empty.
This might be used when your program needs to know
when a block of output has been completely
transmitted, before the program can proceed to some
other task.

6 = OUTPUT ABORTED BY USER

This status code may be generated when the user
aborts output. The btutrs() routine enables/
disables status 6 generation. The user aborts ASCII
output by typing the truncate character defined by
btutru().

11 = LOST CARRIER (HAYES)

The user (or equipment) on this channel has hung up.

More precisely, the "carrier" signal (a tone or
other quiescent sound, which is normally sounded
continuously over the phone line) has been
interrupted.

12 = COMMAND EXECUTION COMPLETED OK (HAYES, UART)

This status code is generated when btucmd()
completes execution of the "soft" commands (and for
| HAYES hardware, before execution of the "hard"
‘ commands). See page 62 for a discussion of hard
and soft commands.

13 = INVALID COMMAND BYTE (HAYES, UART)

This happens if you pass an invalid command byte to
btucmd() for HAYES or UART category hardware. Look
| for 13's in the last column of figure 4-1 (page 58}.

LIBRARY REFERENCE GUIDE GSBL~-155



btusts

21 = X.25 INCOMING CLEAR PACKET (END OF SESSION)

22

This status indicates that an incoming clear packet
was received on this X.25 channel. This could
either be from the other party on the network,
indicating that he ended the session, or from the
network itself, indicating there was some error with
the connection. See page 96 about how to obtain

the cause and diagnostic fields of a clear packet.

X.25 COMMAND OR PAUSE CCMPLETED

23

24

This status indicates that a btucmd() command on
this channel has completed successfully. Either a
pause command ("P" or "p") or an answer command
("A") could eventually generate this code.

X.25 INVALID BTUCMD() COMMAND CODE

This status indicates an illegal character in the
btucmd() command string for this X.25 channel.

X.25 INCOMING X.29 STRING

This status occurs when an X.29 string is recieved
(a data packet with the "Q" bit set. You can use
btuhdr() to retrieve the data (see page 95).

31 = LAN SPX CONNECTION TERMINATED BY OTHER SIDE

The other party in an SPX connection issued a 'T’
command (page 74) to terminate the session.

Note on status codes 31 and 39. If an SPX

session terminates immediately after it receives
data, then your program may find out about both at
the same time: after calling btuscn(), there will
be new data in the buffer, and a status 31 (or 39)
in the status buffer. For that reason, you may want
to be sure all input data is processed before using
a status 31 to reset your channel.

GSBL-156 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

32

LAN PAUSE COMMAND COMPLETED

A pause command ('P’ or ‘p’, see page 73) on this
LAN channel has just finished the 5 or 2 second
delay.

33 LAN INVALID BTUCMD() COMMAND

This means you issued an invalid btucmd() command
code, or your outgoing call command (W...M) did not
have exactly 24 hex digits, or the channel
transmitter is busy right now. The latter may
happen while transmitting, dialing out, listening,
for a connection, or terminating a connection)

34

LAN SPX INCOMING CONNECTION ESTABLISHED

An 'L’ command (page 71) was issued on this

channel to listen for an incoming SPX call. This
status indicates that the call has been received and
the connection is established.

39

LAN SPX OUTGOING CONNECTION ESTABLISHED

A 'W’ command (page 76) was issued on this
channel to establish an outgoing SPX connection.
This status indicates the connection is complete.

36 = LAN SPX TERMINATION COMPLETE BY THIS SIDE

You issued a ’'T’' command to terminate the SPX
connection (page 74) on this channel. This
status indicates that the termination of the
connection is complete.

LIBRARY REFERENCE GUIDE GSBL-157



btusts

37 = LAN RECEIVER ERROR

LAN

This status indicates that the listen ECB completion
code was not 00H or EDH. Some kind of low-level

communications or interface error has occurred.

Error status 37 would show up on any channel
arbitrarily in a group with the same socket number.

38 = LAN RECEIVED UNKNOWN OR UNEXPECTED PACKET
LAN

This channel received an unsolicited packet (IPX
Direct channel), or all channels on this socket are
full (IPX Virtual channel), or we received a packet
with an unknown connection ID (SPX channel).

Error status 38 would show up on any channel
arbitrarily in a group with the same socket number.

Status 38's are likely if you define multiple
channel groups on the same local socket number but
don’t define them on consecutive channels (refer
to page 213).

39 = LAN CONNECTION ERROR

There are many possible causes of this error status.
For SPX channels, the connection may have terminated
due to the watchdog, or to a transmitter error (e.g.
remote abort), or some error was encountered trying
to establish or terminate a connection (e.g. SPX
connection table full, other partner disappeared,
abert connection failed). See the note on page 156.

For IPX channels, the outdial command could not find
the network path to the destination node (in this
case, the status 39 may come after a perplexing
pause of several seconds, during which the system
seems to be "hung"), or some error occurred when
transmitting (e.g. network failure).

GSBL-158 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

40 = LAN GTC INPUT MODE: LOCKED OUT

The terminal should accept no input. This mode is
the result of btulok(chan,l) by the other party.

Note on status codes 40-44. These status codes
only occurs on LAN channels when you've issued the
'G’ command (page 69). You would do that if you
were using GSBL/LAN in a terminal emulation
application. The ’G’ command is a GTC (Galacticomm
Terminal Control) Greeting. It means you volunteer
to preprocess terminal input for the other party.
See page 223 for more on GTC.

41 = LAN GTC INPUT MODE: BINARY

Transparent input mode -- the terminal should just
forward characters verbatim on to the BBS. This
mode is the result of btutrg(chan,nonzero), or of
btuchi (chan,nonnull) by the other party.

See the note under status 40 about the ‘G’ command.

42 = LAN GTC INPUT MODE: ASCII, NO ECHO

Buffer a string of characters, terminate with a
¢CR>, and send the whole string to the BBS without
echoing anything. This mode can be used to enter
passwords. It is activated by btuech(chan,0) from
the other party when he’s in ASCII input mode.

If a control character other than "H=backspace or
“M=return comes in, you may want to immediately send
the character directly to the other party, bypassing
the line input buffer. For example, with The Major
BBS this would preserve some of the effects of
“O=abort and “S=pause.

See the note under status 40 about the ’G’ command.

LIBRARY REFERENCE GUIDE GSBL-159



btusts

43 = LAN GTC INPUT MODE: ASCII, WITH ECHO

Same as status 42 except echo every character.
After echoing the <CR>, also echo a <LF>. The line
length specifies the maximum number of pre-<CR>
characters to accept. Extra characters should be
ignored by the terminal. This is the most commen,
plain vanilla, input mode.

Note on status 43 and 44. Immediately after a
status 43 (or a status 44) is another single status
cocde that indicates the maximum length of the input
line (when 1 to 255) or that line input is unlimited
(when 0). This means that the routine that services
a status 43 or 44 must call btusts() exactly once
and treat it’'s result differently from all other
values returned by btusts().

See the note under status 40 about the ’'G’ command.
44 = LAN GTC INPUT MODE: ASCII, W/ECHO AND WRAP
_LAN

Same as 43 except that when the line length limit is
reached, and another character is typed:

(Case 1) if the character is white-space (blank or
<CR>), then just terminate the line with <CR>
and move on;

(Case 2) if the character is printable and there are
previous spaces on the line, then just forward
the line up to and before the space (with a <CR>
on it), erase the rest from the line on the
terminal’s display, then move this rest down to
a new input line and resume as if it had just
been typed;

(Case 3) if a complete line of non-white-space has
been typed, then terminate and forward the line
up to before the new character and make a new
entry line with the character.

GSBL-160 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

The line length "status code" (see above) should be
used by the main program to wrap input words when the
line would exceed this length. This mode is used

for multi-line text entry.

See the note under status 40 about the ’'G’ command.

49 (ASCII 1) = DTMF 1 SENSED

This code can only happen in response to a "A
("controlled answer") command byte (see page 64).
It indicates that the modem module has sensed the
DTMF tones for "1" (the "1" on a touch-tone phone)
while the modem was waiting for originate-carrier.

63 (ASCII ?) = INVALID COMMAND BYTE (XECOM)

This happens if you pass an invalid command byte to
btucmd() for XECOM category hardware. Look for ?'s
in the next to the last column of figure 4-1

(page 58)

65 (ASCII A) = ABORTED COMMAND PREMATURELY

Can only happen if a command is in progress, and
your program calls btuclc() for that channel, which
both clears the command output buffer and aborts the
currently active command, if any.

66 (ASCII B) = BUSY SIGNAL SENSED

m

This status can only happen in respcnse to an L, M,
or W command byte (see pages 70 to 75). It
indicates that the modem module has sensed a busy
signal on the phone line.

After an X.25 dialout command, this status indicates
that the call failed for some internal reason, like
transmit window full.

LIBRARY REFERENCE GUIDE GSBL-161



btusts

68 (ASCII D) = DIAL TONE SENSED

Can only happen in response to an L or M command

| byte (see page 70). Indicates that the modem module
‘ has unexpectedly sensed dial tone on the line. This

might happen if, for example, an attempt were made
to place a touch-tone call on a pulse-dial phone
line.

70 (ASCII F) = FAILED FOR OTHER REASONS

Indicates that carrier was heard but that the
originate/answer "handshake" failed for some reason
| (probably due to noise on the phone line, or an
| intermittent or very weak signal).

73 (ASCII I) = INAPPROPRIATE COMMAND

This status can be returned anytime you issue a
command byte that is "inappropriate" in the current
context. For example, passing an "A" to btucmd()
when there is already a modem-to-modem connection
underway is inappropriate.

This status provides a way to distinguish between
300 and 1200 baud connections on XECOM category
hardware. There is no other way to do this if the
baud rate was automatically determined by a calling
user’s carrier signal (after you issue an "A" or
""A" command). Here is how you distinguish baud
rates: if you issue a ""H" command (page 64) after
a 300 baud connection has been established, you get
this status code. If the connection is 1200 baud,
you'll get the "OK" status code 2 (assuming the “H
command is by itself in the command string)

77 (ASCII M) = MODEM CARRIER SENSED

This status condition can only happen in response to
a W command byte (see btucmd(), page 58). It
indicates that the modem module has sensed answer
carrier on the phone line.

GSBL-162 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

After an X.25 dialout command, this status indicates
that the call succeeded and the connection has been
established.

82 (ASCII R) = RINGING SENSED, BUT NO ANSWER

This status condition can only happen in response to
an L, M, or W command byte (see btucmd(),

page 58). It indicates that the modem module has
sensed a ringing sound on the phone line. This
happens when you have placed a call, and you start
to hear the telephone company’s "ring-back" sound,
but the other party has not yet picked it up.

84 (ASCII T) = TIMEOUT (SILENCE SENSED)

This status can only happen in response to a "A, "X,
“Y, A, L, M, 0, or W command (see pages 64 to 75).
It indicates that the modem module has timed out
after waiting 17 seconds for the carrier signal
(except for the W command, which waits only 5
seconds for dial tone).

86 (ASCII V) = VOICE SENSED

Can only happen in response to an L, M, or W command
byte (see pages 70 to 75). Indicates that the

modem module has sensed a rapidly varying spectrum
of activity on the phone line. This code can also
crop up if there is excessive noise on the line, or
if the cable is not connected to the telephone
company.

118 (ASCII v) = VOICE SENSED (BY “A COMMAND)

This status code can only occur in response to a "A
command (see btucmd() and page 64). Otherwise it
| is identical to status code 86.

LIBRARY REFERENCE GUIDE GSBL-163



btusts

250 = TRANSMISSION ERROR (X.25)

This status indicates an internal transmission error
on this X.25 channel. Some data may have been lost.

251 = DATA INPUT CIRCULAR-BUFFER OVERFLOW

More data has been received than can fit in the
input buffer for this channel. Either the capacity
of the input buffer was reached before the
termination condition was reached (the termination
conditicn is: CR in ASCII mode, byte count in
Binary mode), or the main program has not been
servicing the channel often enough -- using btuinp()
(for ASCII mode) or btuict() (for Binary mode).
Exceeding the maxinl line length specified by
btumil() will also generate status 251’s.

In interactive applications, this status may merely
mean that the user has typed an input line that is
too long, and thus the condition can be safely
ignored.

252 = ECHO OUTPUT CIRCULAR-BUFFER OVERFLOW

An attempt was made to buffer more data for echo
than the echo buffer could hold. This status can
usually be safely ignored, since it indicates merely
that the user has not had all of his input echoed
back to him. The echo buffer can hold up to 255
bytes, so this status can happen if both the

input buffer size is specified larger than 128 (see
btusiz() and btulsz(), pages 149, 116), and if the
user manages to type more than 255 characters during
an extended period in which echoes are locked out --
for example, during the transmission of a very long,
continuous block of output data. The chiout() or
chious() routines (page 47) of btuchi() or bturti()
can also overflow the echo buffer,

GSBL-164 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btusts

253 = DATA OUTPUT CIRCULAR-BUFFER OVERFLOW

An attempt was made to buffer more data for
transmission than the output buffer can hold. This
can happen if your program tries to output more, or
larger, blocks of data than it has allowed for in
the output buffer size parameter "osiz" passed to
btusiz() or btulsz() (pages 149, 116). This status can
only occur as a result of a call to btuxmt()

(page 189) or btuxct() (page 182). There is

usually little your program can do but ignore this
status if it arises, but you should consider
increasing your data output buffer size if it arises
very often. See also the caution on btuxmt() block
terminator characters in the output buffer

(page 191).

254 = STATUS INPUT CIRCULAR-BUFFER OVERFLOW

This is a serious error condition, and probably
merits resetting the channel if it occurs. It
indicates that status information has been lost,
which means that you may have a false sense of the
condition of the channel. For example, you may have
missed a "lost-carrier" status (status 1 or 11).
Fortunately, as the status buffer can contain up to
31 bytes, it is almost impossible for this status to
crop up in peace-time conditions.

255 = COMMAND OUTPUT CIRCULAR-BUFFER OVERFLOW

This is a serious error condition, and probably
merits resetting the channel (if not the entire
machine) if it occurs. You can buffer up to 63
bytes of commands before getting this status, which
is far more than most programs should need. The
most likely cause of this status is a limited
program "crash" of some sort: some unrelated piece
of software went berserk and corrupted the channel
data blocks.

-10 = CHANNEL NCT DEFINED

This status can only happen conce after a call to
btudef(). It indicates that the channel hardware
did not respond properly to a reset attempt -- which
means that it is either malfunctioning or absent
altogether. Yet another possibility is that you
have purchased an N-channel version of the Software

LIBRARY REFERENCE GUIDE GSBL-165



btusts

Breakthrough, and you have attempted to define
channel N or higher. 1In this case, all channels
except 0 through N-1 will always "appear" to have no
hardware. These channels may still be used for
local emulation however (refer to page 125).

-11 = CHANNEL NUMBER OUT OF RANGE

Indicates that the "chan" parameter passed to
btusts() itself is outside the range of valid
channel numbers, as defined in the original call to
btusiz() or btulsz() (pages 149, 116).

CAUTIONS

Most probably, you will not have to deal with each
and every one of these status codes whenever you
call btusts(). In any given situation there are
only a few that you should expect. See fiqure 4-1
(page 58) for a summary of what commands can be
expected to directly generate which status codes.
Other status codes are asynchronous, of course
(ringing, lost carrier, input data received, etc).
Any unexpected status codes should be handled by
resetting the channel (bturst(), page 136).

Up to 31 bytes of status can be queued, per channel,
before the status queue overflows.

See the note on status 43 and 44 (page 160)

about how btusts() follows these status return codes
with a status that could be anywhere between 0 and
285,

GSBL-166 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btutrg

SUBROUTINE NAME

btutrg -- set the input byte trigger quantity
(used in conjunction with btuict())

SYNOPSIS
err=btutrg(chan,nbyt);
int err; zero means OK
int chan; channel number
int nbyt; input byte trigger quantity:

> 0 for Binary input mode,
indicating bytes per block
(use btuict() for input)

= 0 for ASCII input mode
(use btuinp() for input)

DESCRIPTION

If "nbyt" is nonzero, this routine causes input
characters to be processed in transparent Binary
mode. This means that no interpretation of the
incoming characters takes place whatsoever: no
translation through the global input-character
translation table, no backspace handling, and no
CR-triggered end-of-line status handling (as a
convenience, echoing is also automatically disabled
when in transparent mode). Instead, characters are
simply accepted as they come in, and when the
trigger count of "nbyt" has been reached, a status
of 4 (BYTE-COUNT-TRIGGERED INPUT DATA AVAILABLE) is
generated for the channel. Each group of "nbyt"
input characters will generate this same status.

If "nbyt" is zero, then input is in ASCII mode (the
default). See page 17 for more details on Binary
versus ASCII input modes.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-167



btutrg

CAUTIONS

This routine should only be used in special
situations, such as for machine-to-machine
communications (XMODEM, etc.), or to capture
individual user keystrokes in real time (nbyt=l).
For the latter case, you may also want to consider
cases in which a custom character interceptor
routine will do the trick. See the discussion of
the btuchi() routine, starting on page 47.

GSBL-168 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btutrm

SUBROUTINE NAME

btutrm —- set input line terminator character
SYNOPSIS

err=btutrm(chan,crchar);

int err; zero means OK

int chan; channel number

char crchar; input line-terminator (0 to disable)
DESCRIFIION

The "input line-terminator" character is the
character which, when typed at an interactive user’s
console, indicates that all editing of the input
line is complete, and that it is time for your
program to take the line as a whole and perform
whatever processing it may require. The default
line-terminator is a carriage return (ASCII code
13), but there may be occasions when you need to set
it to something else. This routine gives you that
option.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well
CAUTIONS

You will only want to use this routine in exotic
circumstances.

LIBRARY REFERENCE GUIDE GSBL-169



btutrs

SUBROUTINE NAME

btutrs -- generate status 6 when output aborted by user?

SYNOPSIS
err=btutrs(chan, onoff);
int err; zero means OK
int chan; channel number
int onoff; l=generate O=don’t generate

(bturst() defaults to 0)

DESCRIPTION

In ASCII output mode (page 19), any data block in
the process of being transmitted to a channel is
aborted if the character specified in btutru() is
received from the channel. To notify your mainline
pregram, btutrs(chan,l) will trigger a status 6
whenever the user aborts output in this manner.

See page 171 for more on output abort.

RETURNS
-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

GSBL-170 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btutru

SUBRCUTINE NAME

btutru -- set output-abort character
(truncates current output block)

SYNOPSIS

err=btutru(chan,trunch);

int err; zero means OK

int chan; channel number

char trunch; truncate character (0 to disable)
DESCRIPTION

In ASCII output mode (page 19), any data block in
the process of being transmitted to a channel is
aborted if the character you specify here is
received from the channel. On DEC systems, the
character that users are accustomed to for this
purpose is CTRL-O (control-oh). This is what we
have used for The Major BBS. On other systems
CTRL-X is preferred.

only the block currently being transmitted is
truncated, or aborted -- the rest of the output
buffer is left alone. This way, it is less likely
that users will inadvertently abort "asynchronous"
messages such as Sysop alerts or messages from other
users, or their next prompt. Each separate call of
the btuxmt() routine (see page 189) generates a
different cutput "block" which is individually
clobbered by the abort character.

This feature is disabled by default, since its use
is potentially harmful. Be sure to educate your
users about the proper use of output block
truncation if you enable it in your particular
system.

RETURNS
-10 channel is nct defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or

btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-171



btutsw

SUBROUTINE NAME

btutsw -- set terminal screen width, and
select output word wrap.

SYNOPSIS
err=btutsw(chan,width);
int err; zero means OK
int chan; channel number
int width; > 0 turn on output word wrap, where

"width" is the screen width
= 0 turn off output word wrap
(default condition)

DESCRIPTION

This routine turns on the output wordwrap feature,
specifying the screen width to which text output
should conform during ASCII output (page 19).
Specifying a screen width of 0 turns off output word
wrap.

First we will describe cutput word wrap and the
effects of related Software Breakthrough routines.
Then we will describe the default situation (what
happens when you call none of these routines).
Finally, we will present an example.

How Output Word Wrap Works

The output word wrap feature prevents words (strings
of nonblank characters) from being split across
line boundaries. This means, for example, that
80-column wide messages will be readable both to
users with 80-column wide terminals, and to users
with 40-column wide terminals. This is achieved by
translating spaces into carriage returns in the
output data string specified by btuxmt()

(page 189). To prevent the user’s terminal from
doing its own line wrapping, each line is actually
limited to width-1 characters.

GSBL-172 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btutsw

btutsw() is the primary controller of output word
wrap, but it operates in concert with other Software
Breakthrough routines:

Routine Involvement with output word wrap Page

btuher () specifies the "hard" carriage return 94
character

btuscr() specifies the "soft" carriage return 143
character

btulfd() specifies the "linefeed" character to 114
append to every carriage return

btuxmt() specifies the output string, and 189

actually performs the output word
wrap processing

The "hard" and "soft" carriage return characters are
special characters in your output data string that
affect the operation of output word wrap.

Hard carriage returns are always interpreted as

the end of the line. They are translated into the
ASCII <CR» character, which is appended with <LF> if
btulfd() has so specified. Conceptually, hard
carriage returns form paragraph boundaries.

Soft carriage returns may be interpreted as a single
space, or as a carriage return, depending upon where
they are positioned in the paragraph. The rule is
this:

When output word wrap has taken place in a
paragraph, all subsequent soft carriage returns
are converted into spaces.

Word wrap means that a line has been shortened to
conform to the screen width by changing one of its
spaces into a carriage return. Paragraphs are
defined as strings of characters between hard
carriage returns. Note that conversion of a soft
carriage return into a space does not preclude its
reconversion into a carriage return by the word wrap
procedure. In this manner, wide paragraphs are
completely "reflowed" to fit the available screen
width. Note, however, that narrow paragraphs are
not reflowed to fit wide screens.

LIBRARY REFERENCE GUIDE GSBL-173



btutsw

Default Conditions

After a channel is reset by bturst(): the output
word wrap feature is turned off; the hard carriage
return is 13 (ASCII <CR>); and there is no soft
carriage return. The linefeed character is 10
(ASCII <LF>). 1In this situation, when transmitting
messages, the line terminator should be the ASCII
<CR> character:

btuxmt (chan,"This is one line of text.\r"):

The "\r" is the C-language representation for ASCII
<CR>. Since this is the hard carriage return
character, it is translated into ASCII <CR> (that
is, it is not changed). It is appended with ASCII
<LF>.

Example of Output Word Wrap

The following conditions are similar to those in
The Major BBS by Galacticomm (although screen
width is user-selectable).

btutsw(chan,20);
btuhcr (chan, 13);
btuser(chan,10);

Now, hard carriage returns are ASCII <CR>’s and
ASCII <LF> is the soft carriage return. The
terminal screen width is limited to 20 characters
for simplicity. Now let’s suppose that the
following statements were executed:

btuxmt (chan,"The blue form of the Engelmann Spruce\n");
btuxmt (chan,"is native to the mountains of western\n");
btuxmt (chan,"North America.\n");

btuxmt (chan, "\r");

btuxmt (chan, "Koyama’s Spruce is native to central\n");
btuxmt(chan,"Japan (at altitudes of 1500 to 1800\n");
btuxmt (chan, "meters) and also to Korea.\n");

btuxmt (chan, "\r");

GSBL-174 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btutsw

The result on the terminal of channel "chan" would be:

Results WITH output word wrap

The blue form of
the Engelmann
Spruce is native to
the mountains of
western North
America.

Koyama's Spruce is
native to central
Japan (at altitudes
of 1500 to 1800
meters) and also to
Korea.

If you had not turned on output wordwrap, this hypothetical
20-column wide screen would look something like:

Results WITHOUT output word wrap

The blue form of the
Engelmann Spruce is
native to the mount

ains of western Nort

h America.

Koyama’'s Spruce is n
ative to central Jap
an (at altitudes of
1500 to 1800 meters)
and also to Korea.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

LIBRARY REFERENCE GUIDE GSBL-175



btuudf

SUBROUTINE NAME

btuudf -- "un-define" channels
SYNOPSIS

err=btuudf (schan,n);

int err; zero means OK

int schan; starting channel number

int n; number of ports in this group
DESCRIPTION

This command undoes the effects of btudef()

(page 82). This capability is provided in case

you need to completely remove a channel, or group of
channels, from service without affecting the
operation of any other channels. 1In most cases,
this will not be necessary, but it may come in handy
if you are doing something exotic. Many of the
other Software Breakthrough routines will return a
code of -10 on a channel that has been un-defined.

CAUTIONS

There is no btuudf() (un-define) for LAN or X.25
channels. Defining a LAN or X.25 channel (calling
btusdf () with chtype from 4 to 7) is "permanent" and
can occur only once for a given channel over the
run-time life of your program.

RETURNS

-11 channel number(s) out of range: the specified
range of channels (schan to schan+n-1) is not
within the inclusive range 0 to nchan-1, where
nchan has been defined in btusiz() (page 149)
or btulsz() (page 116)

0 the specified channels were "un-defined"
successfully.

GSBL-176 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuusp

SUBROUTINE NAME
btuusp —— special UART polling method
SYNOPSIS

err=btuusp(chan,oncff);

int err; zero means OK
int chan; channel number
int onoff; l=special method (IIR bit 0)

O=standard method (LSR bit 0)

DESCRIPTION

This function only has an effect on 8250-type UART
channels. It would most likely be used on 16550
UARTs (see about btuffo() on page 92).

The standard method (onoff=0) for polling UARTs is
to disable interrupts and poll the "Data Ready" bit
(bit 0) of the Line Status Register (offset 5).

The special method (onoff=1) is to turn off OUT2
(MCR bit 3 is 0), enable received-data interrupts
(IER bit 0 is 1), and to poll the "Interrupt
Pending" bit (bit 0) of the Interrupt Identification
Register (offset 2). No interrupts are actually
received by the processor, because OUT2 is turned
off, which by IBM PC convention is used to gate the
UART interrupt onto the bus.

The special method is more reliable for some brands
of UARTs, especially on fast computers, due to a
sluggishness of the Data Ready bit to turn off after
the last byte is read from the 16550's hardware
FIFO. Compared with the Data Ready bit, the
Interrupt Pending bit is the reverse sense:
O=interrupt pending=data available, l=no
interrupts=input FIFO empty.

CAUTIONS

This special method may not work on some
non-standard brands of UARTs, or non-standard serial
interface hardware (although we haven’t found any
yet).

LIBRARY REFERENCE GUIDE GSBL-177



btuusp

HAYES LAN
|_HAvES | xecom [HVYIRN

[ Do not use this function on non-8250 ports. Such
operation is not defined.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
[ btulsz(), pages 149, 116)
OK, special mode turned off
OK, special mode turned on

o

GSBL-178 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btux29

CCITT recommendation X.3 defines the numbering and
meaning of PAD parameters. Many PAD manufacturers
define their own extensions to X.3 to support
specific features. Here is a sample of the
parameters as used by OST’s Europad III (unless
otherwise mentioned, 0=off and l=on):

1 Escape from data transfer (for user to enter X.28
commands) (0=disabled l=enabled for control-P)
2 Echo (0=off 1=on)

3 Transmit when (0=full packet 2=after CR
126=after any control character)

4 Transmit when (0=full packet n=after n/20
seconds of no data from the user)

5 Enable PAD to XON/XOFF-throttle user
transmissions (or CTS-throttle if on-standard
"FRC" PAD option is set to Yes)

6 Display PAD service signals (indicating call
progress)

7 Handling of Break-detect (0=off, otherwise see
PAD manual)

8 Discard data output

9 Padding after CR (0O=none, n=append n NUL bytes)

10 Line folding (0O=none, n=auteomatic CR after n
characters on line)
11 Line speed, in bits per second:

0 = 110 bps 10 = 50 bps
1 = 134 bps 11 = 75/1200 bps
2 = 300 bps 12 = 2400 bps
3 = 1200 bps 13 = 4800 bps
4 = 600 bps 14 = 9600 bps
5 =175 bps 31 = 1200/75 bps
6 = 150 bps 32 = 3600 bps
7 = 1800 bps 33 = 7200 bps
12 Enable PAD to respend to XON/XOFF throttling by
the user
13 Linefeed insertion (0O=none, 4=echo LF after
echoing CR)

14 Padding after LF (O=none, n=append n NUL bytes)

15 Local user editing of each transmitted line

16 Character-Delete character (0O=none, or ASCII
value, e.g. 8=backspace)

17 Line-Delete character (0O=none, or ASCII value,
e.g. 24=control-X)

18 Line-Display character (0O=none, or ASCII value,
e.g. 18=control-R)

GSBL-180 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btux29

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
-13 X.25 interface not available (only returned when you
are using GSBL without the X.25 Software Option)
0x500 (hexadecimal) transmit window full - try again later
0 channel number is good

all other return values indicate some error returned
by the "DATASD" transmit function of the PC XNet
driver. Refer to the documentation from OST,
specifically, the PCXNET.H source file.

LIBRARY REFERENCE GUIDE GSBL-181



btuxct

SUBROUTINE NAME
btuxct -- transmit to channel (by byte count)
SYNOPSIS

err=btuxct (chan,nbyt,datstg);

int err; zero means OK

int chan; channel number

int nbyt; number of bytes to send

char *datstg; data block to be sent
DESCRIPTION

This routine transmits a data block to the specified
channel in Binary output mode (see btuxmt(),

page 189 for ASCII output mode). There are no
restrictions on the length of the block, as long as
there is room for it in the output data buffer. The
block may contain any data, including zeros. Each
byte will be transmitted when its turn comes.

The btuxct() routine does not have the "output
suspended while inputting" feature of btuxmt()
(page 189). 1In fact, if you need to use btuxmt(),
but you want to disable this suspension feature,
then after using btuxmt() you might code:

btuxct (chan,0,"");

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 all is well

CAUTIONS

If there is not enough room in the output buffer for
the block, btuxct() will still return 0, but a
status of 253 (DATA OUTPUT CIRCULAR-BUFFER OVERFLOW)
will be queued for btusts(), and NONE of the data
block will be ocutput. If your program needs to know
right away whether the data will fit, use btuocba()
(page 130) and find out ahead of time how much

space is available in the transmit buffer.

GSBL-182 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxit

SUBROUTINE NAME

btuxlt -- set input translation table

SYNOPSIS

btuxlt (oldchr,newchr);

char oldchr; character to be translated

char newchr; character to xlate into (0 to ignore)
DESCRIPTION

The global input-character translation table applies
to all channels in ASCII input mode (page 17),

where you have not installed a custom character
interceptor using btuchi() (page 47). As each
character is received from the outside world, its
ASCII value is used as an index into the translation
table. If the resulting lookup value is zero, the
character is ignored. Otherwise, the lookup value
is used as though it had been received in place of
the original (indexing) character.

This facility serves several purposes. Different
people have different ideas as to what ASCII control
characters they do or do not like. By default, only
backspace (8) and carriage return (13) are accepted,
and the translation table entries for all other
characters in the range from 0 to 31 are zero. If
you happened to like BEL (ASCII 7), you could write
(in C):

btuxlt(7,7);
This would cause the bell character, when typed at a
user’s keyboard, to be echoed and passed along to

your main program normally, just like any ordinary
printable ASCII character.

LIBRARY REFERENCE GUIDE GSBL-183



btuxit

Another purpose of the translation table is to
permit you to translate upper case to lower case, or
vice versa. This may improve the efficiency of the
application software, in that you will not need to
consider upper/lower case when comparing strings,
storing them in a database, etc. For example, the
following simple loop (in C) sets things up so that
all channels in the ASCII mode will automatically
treat upper case characters as though they were
lower case:

for (i='A" ; i <= '2' ; i++) {
btuxlt(i,i-'A’+'a’);
}

The third use of the translation table is to to deal
with parity, overrun, and framing errors. With
"error-passthru" (ref btuerp(), page 90), enabled by
default, bytes read in with these errors will be
received and their high bits will be set. Thus they
will form translation table indices in the range
from 128 to 255, as opposed to proper ASCII
characters, which will have values of 0 to 127.
There are, then, four main ways you might elect to
deal with input characters involving these errors,
by setting the upper half of the global translate
table.

1. Reject them: use btuxlt() to set all index
values in the range 128-255 to zero, thereby
causing erroneous input to be completely
ignored.

2. Blot them out: use btuxlt() to translate all
bytes in the range 128-255 to some nonzero
"error" character, such as BEL (7), or X (88).

3. Tag them: use btuxlt() to cause values in the
range 128-255 to be passed through unchanged.
In this way, you defer the decision as to what
to do about them to your main program. If it
wants to accept or reject them in a context or
user-dependent way, it may do so.

GSBL-184 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxlit

4. Accept them: the translation table defaults to
this arrangement, whereby values in the range
128-255 effectively have 128 subtracted from
them (in other words, their high bit is
cleared). Accepting these characters means
ignoring the error —- this is the default
because many interactive applications do not
want to insist that the caller have the right

parity.

Default Translate Table

By default, all input control characters other than
backspace and carriage return are ignored. No case
conversions are active. Parity, framing, and
overrun errors are ignored. A little kicker is that
the RUBOUT character (ASCII 127) is translated to
backspace, since many older terminals do not have a
backspace key.

The following chart shows the 256 table values in
hexadecimal. To use the chart, start with the raw
input character to be translated, expressed as a
hexadecimal number. Use the first hex digit to
celect a row of the chart, then use the second to
select a column. The number found at the
intersection of the row and the column is what your
original raw input character will translate to.

2nd digit
01 2 3 456 7 8 9 aBCDEF

00 00 00 00 00 00 00 00 08 00 00 00 00 OD 00 00
00 00 00 00 00 00 00 OC 00 00 00 00 00 00 00 00
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5a 5B 5C 5D 5E 5F
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 08
00 00 08 00 00 00 00 OD 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F
70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 08

s

w0

o P P Qs

MEooOOQOW» OO~ Es W HEO
o
o
o
o
o
o
o
o
=)
I=3
o
=]

LIBRARY REFERENCE GUIDE GSBL-185



btuxit

RETURNS
None.

CAUTIONS

Any changes made to the translation table apply
instantly to the system as a whole. Unless you are
doing something unusual, this means that your
btuxlt() calls, if any, should all appear at the
beginning of your program, just after your call to
btuitz().

GSBL-186 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxmn

SUBROUTINE NAME

btuxmn -- transmit ASCII string that btuclo() will not
be able to clear. (btubsz() will clear,

however.)
SYNOPSIS
err=btuxmn(chan,outstg);
int err; zerc means OK
int chan; channel number
char *outstg; string to send (NUL-terminated)
DESCRIPTION

This routine transmits a character string to a
channel in the ASCII output mode (page 19). There
must be room for the string in the output buffer.
The string may contain any number of line
terminators (see below).

This routine is almost identical to btuxmt(). See
page 189 for details on btuxmt(). btuxmn() however
puts strings in the output buffer that btuclo() will
not be able to clear. You might use btuxmn() to
transmit an important message to a user that you do
not want him to be able to skip or abort.

RETURNS

-10 channel is not defined (see btudef(), page 82)
-11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 channel number is good

CAUTIONS

If there is not enough room in the output buffer for
the string, btuxmn() will return 0, but a status of
253 (DATA OUTPUT CIRCULAR-BUFFER OVERFLOW) will be
queued for btusts(), and the data string will not be
output. If your program needs to know right away
whether the data will fit, use btucba() (page 130)
to find out ahead of time how much space is
available in the output data buffer.

Like btuxmt(), each call to btuxmn() puts a new

"block" into the data output buffer, terminated by a
hex 01 byte (Control-A), versus btuxmt()'s hex 00.

LIBRARY REFERENCE GUIDE GSBL-187



btuxmn

This routine will write a "\x01' byte over the
terminating \x00’ NUL temporarily, and then restore
the NUL, so the outstg location must be writable.

GSBL-188 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxmt

SUBROUTINE NAME

btuxmt -- transmit to channel (ASCIIZ string)

SYNOPSIS

err=btuxmt (chan,outstqg);

int err; zero means OK

int chan; channel number

char *outstg; string to send (NUL-terminated)
DESCRIPTION

This routine transmits a character string to a
channel in the ASCII output mode (page 19). There
must be room for the string in the output buffer.
The string may contain any number of line
terminators (see below). btuxmt() is the primary
means of transmitting data to a user during an
interactive session.

If the user is in the middle of constructing an
input line when this routine is called, output will
be postponed until he clears the line (either by
pressing RETURN or by backspacing to the beginning
of the line). Once output has begun, any data that
the user enters while output is still in progress is
not echoed until output of the current block
completes. This supports asynchronous input and
output and makes for a very readable user display,
especially during functions such as teleconferencing.
1f this feature is undesirable, use btuxct() (page 182).

The following routines control operation of
btuxmt () by selecting various ASCII output modes:

btutsw() Output word wrap

btuhcr () Hard carriage-returns

btuscr () Soft carriage-returns

btulfd() Linefeeds appended to carriage returns
btutru() Output abort character

btuxnf () XON/XOFF handshaking

btupmt () Prompt characters

You will probably want to terminate each line in your
data string with ASCII <CR> ('\r’ in C notation),

the "hard" carriage return. For transmitting a
paragraph of text, you may want to use the "soft"
carriage return, ASCII <LF> ('\n'). See page 174

for an example. For prompting, you might have no
terminator character at the end of your data string.

LIBRARY REFERENCE GUIDE GSBL-189



btuxmt

If your users have ANSI graphics capabilities, then you may
transmit the following directives to them using btuxmt()
(there are no spaces in any of these directives):

<ESC> [ <row> ; <column> H Move cursor to <row>,<columny
<ESC> [ <row> ; <column> £ Move cursor to <row>,<columny
<ESC> [ <nrows> A Move up <nrows> rows

<ESC> [ <nrows> B Move down <Nrows» rows

<ESC> [ <ncols> C Move forward <ncols> columns
<ESC> [ <ncols> D Move backward <ncols) columns
<ESC> [ s Save cursor position

<ESC> [ u Restore cursor position

<ESC> [ 2 7 Erase display

<ESC> [ K Erase to end of current line
Display Attributes

€ESC> [ 0 m Normal NOTE:

<ESC> [ 1 m Bold The "m" directives may be
<ESC> [ 4 m Underscore combined. For example, to
<ESC> [ 5 m Blink select blinking black on
<ESC> [ 7 m Reverse blue, you could code:

<ESC> [ 8 m Invisible btuxmt (chan, "\x1B[5;30;44m");
Set Foreground Color Set Background Color

<ESC> [ 3 0 m Black <ESC> [ 4 0 m Black

<ESC> [ 3 1 m Red CESC> [ 4 1 m Red

<ESC> [ 3 2 m Green <ESC> [ 4 2 m Green

<ESC> [ 3 3 m Yellow <ESC> [ 4 3 m Yellow

<ESC> [ 3 4 m Blue <ESC> [ 4 4 m Blue

<ESC> [ 3 5 m Magenta <ESC> [ 4 5 m Magenta

<ESC> [ 3 6 m Cyan <ESC> [ 4 6 m Cyan

<ESC> [ 3 7 m white <ESC> [ 4 7 m White

The following special "IF-ANSI" construct interacts with the
"[" and "]" commands of btucmd():

<ESC> [ [ <for-ANSI-users> | <for-non-ANSI-users> ]

Only one of these strings will be transmitted, depending on

which of the "[" or "]" btucmd() commands was last issued for
the channel (see page 79). There is more to these commands:
the "]" command disables ANSI graphics, and if in effect,

btuxmt () will not transmit any of the above directives.

The tilde (7) character is used as an escape character by
btuxmt(). The following character pairs may be used to avoid
conflicts with the IF-ANSI construct:

7| represents a single | (vertical bar)

"1 represents a single ] (closed bracket)
G represents a single ~ (tilde)

GSBL-190 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxmt

RETURNS

-10 channel is not defined (see btudef(), page B2)
11 channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)
0 channel number is good

CAUTIONS

If there is not enough room in the output buffer for
the string, btuxmt() will return 0, but a status of
253 (DATA OUTPUT CIRCULAR-BUFFER OVERFLOW) will be
queued for btusts(), and the data string will not be
output. If your program needs to know right away
whether the data will £it, use btuoba() (page 130)
to find out ahead of time how much space is
available in the output data buffer.

Each call to btuxmt() puts a new "block" into the
data output buffer. A block is the sequence of
characters pointed to by the "datstq" parameter, and
terminated by a 0-byte. btuxmt() stores the O-byte
in the output buffer to determine block boundaries.
This may become critical with regard to output
buffer capacity if you are doing numerous small
transmissions with btuxmt(). The alternative is to
use btuxct() (page 182), which does not put
termination characters in the output buffer.

There is a razor's edge situation in which the
priority of transmission over command execution must
be considered:

btucmd(chan, "p")
btuxmt (chan, "Before or after pause?\r");

In this example, you cannot be sure that the command
will be executed before the string is transmitted.
This is because the interrupt-level code, when
presented with commands and transmissions
simultaneously, will choose transmissions. How can
this be? The service rate (page 128) is low enough
that, most probably, no service cycle will come
between the above two instructions. If this occurs,
the effects of these two statements will appear to
the interrupt-level code simultanecusly, and the
data transmission will come before the pause.

LIBRARY REFERENCE GUIDE GSBL-191



btuxnf

SUBROUTINE NAME

btuxnf -- set XON/XOFF characters
select page mode

SYNOPSIS
err=btuxnf (chan,xon,xoff); (for non-page mode)
—or-
err:btuxnf(chan,xon,—xoff,cnt,stg); (for page mode)
int err; zero means OK
int chan; channel number
int xon; character taken as XON, or "resume"
(0 to take anything)
int xoff; character taken as XOFF, or "suspend"
(0 to disable, negative for page mode)
int cnt; Number of lines on screen (page mode only)

char *stg; Page-break pause message (page mode only)
DESCRIPTION

A user can suspend text output to his terminal by
sending the "xoff" character that you specify here.
The "xon" character will cause the output to resume.
Make the "xon" parameter zero if you want any
character to resume output. Make the "xoff"
parameter zero to disable XON/XOFF altogether. This
feature is only in effect during the ASCII output
mode (page 19).

The page mode feature (of the ASCII output mode)
automatically pauses output between each screen of
text. This gives the user a chance to review one
screen before typing a key to move on to the next
screen. The user resumes output the same way as
after an XOFF pause: he types the "xon" character
(if the "xon" parameter is nonzero), or he types
any character (if "xon" is zero).

To select page mode, simply substitute for the
"xoff" parameter its negative value (for example -19

instead of 19). 1In this case, you must also pass
the "cnt" and "stg" parameters to btuxnf() (see the
second line of the synopsis above). "cnt” is the

total number of lines on the user’s screen. "stg"
is a pointer to the message to display between each
screen (a O-terminated character string).

GSBL-192 THE GALACTICOMM SOFTWARE BREAKTHROUGH



btuxnf

The default values after initialization or reset
operate just as if the following call had been made:

This

Here

This

RETURNS

-10
=11

0

CAUTIONS

btuxnf (chan,0,19);
means:
chan This is the modem channel number

xon = 0 Any character resumes after a pause
xoff = 19 Control-S pauses

Page mode is NOT selected.
is an example of how you would enable the page mode:

btuxnf (chan,0,-19,24,"Hit any key to continue...");

means:

chan This is the modem channel number

xon = 0 Any character resumes after a pause
xoff = -19 Control-S pauses, page mode is selected
ent = 24 The user’s screen has 24 lines

stg points to: "Hit any key to continue..."
This string is shown at the end of each
block of 22 lines.

channel is not defined (see btudef(), page 82)
channel number is out of range (see btusiz() or
btulsz(), pages 149, 116)

all is well

LIBRARY REFERENCE GUIDE

The Software Breakthrough cannot count wrap-arounds

and line-breaks enforced by the user’s terminal, so

be sure that the width of the user’s screen has been
properly set by btutsw() (page 172).

GSBL-193



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

5.0 HAYES AND XECOM PROGRAMMING EXAMPLES

The two programs in this section were written in the C
lanquage. They illustrate the use of the most important
Software Breakthrough routines. One program runs on HAYES
category hardware, like the Galacticomm Model 2408
Breakthrough card, and the other on XECOM category hardware,
like the Galacticomm Models 16 and 4 Breakthrough cards. See
page 7 for a description of hardware categories.

Each program is a complete multi-user teleconferencing system,
albeit a simple one. Except for the hardware differences, the
two programs function the same.

The HAYES program, page 196, with lines numbers 1 to 93,
will be explained line-by-line in secticn 5.1. The lines of
the XECOM program, page 206 are numbered 101 to 155, and are
explained in section 5.2.

When a user calls up this teleconferencing system with a modem
and a terminal, modem communication is established, and the
user is asked to enter his name. Then he is placed online
with the other users. ®hile online, anything that one user
types will appear on the displays of all others who are also
online. All input and output is line-buffered, so that
messages do not clobber one another.

For example, someone dialing up this teleconferencing system
might see the following on their display (what the user types
is shown in boldface):

To log on, please enter your name: FARKEL
Okay, you’re cnline.

>HELLO OUT THERE

k% Message sent *x*

>EkKk

From Ferd: Hello, Farkel, how’s the wife?
>WHY, FANNY’S FINE, FERD.

*%x* Message sent ***

>k

From Ferd: ah, good, good, and the children?
>FLORA HAS THE FLU, BUT FLOYD AND FREDDIE ARE FEELING FINE
*%*% Message sent *x%

>

GSBL-194



SECTION 5.0 HAYES AND XECOM EXAMPLES

GSBL-195



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

1 int chan,status, state|

2 char name[8]([21], mf(liB].ubfllﬁJ],’mlluc()

3

4 main()

5

6 printf ("TELECONFERENCE DEMONSTRATION -- HIT ANY KEY TO STOP\n");
7 btuite(malloc (btusiz(8,128,1024)));

8 btudef (0, 0x3ES, B) ; /* define eight "COM3" modems */
9 for (chan=0 ; chan < 8 ; chan++) |

10 ratchn (chan) ;

11 }

12 while (!kbhit ()} {

13 if ((chan=btuscn()) >= 0) {

14 status=btusts (chan) :

15 awitch (state[chan]) {

16 case 0: /*--- CEANNEL STATE 0: Initialized condition ------%/
17 if (status == 5)

18 btulok (chan, 0} ;

19 btuoces (chan,0) ;

20 1

21 else if (status == 3)

22 btuinp (chan, ibf) ;

23 if (stremp{ibf, "CONNECT") == Q) |

24 btubrt (chan, 300) ;

25 1

26 else if (stremp(ibf, "COMNECT 1200") == 0) {
27 . btubrt (chan, 1200) ;

28

29 else 1f (strcmp(ibf, "CONNECT 2400") == 0) {
30 btubrt (chan, 2400) ;

31 )

32 else |

33 break;

34 j

35 btucmd (chan, "p") ;

36 state[chan]=1;

37 )

38 break;

39 case l:  /*--- CHANNEL STATE 1: Waiting for 2 sec pause —-—-*/
40 if (status == 12)

41 btuxmt (chan, "\rTo log on, please enter your name: ");
42 btucli (chan) ;

43 btuach (chan, 1) ;

44 state([chan]=2;

45 ¥

46 alse {

47 ratchn (chan) ;

48

49 break;

50 case 2:  /*--- CHANNEL STATE 2: Waiting for name -—--------= LFd
51 if (status == 3)

52 btuinp (chan, ibf) ;

53 sprintf (name[chan], "%1.20s", ibf) ;

54 btuxmt (chan, "Okay, you’re online!\r>");

55 astate[chan]=3;

56 ¥

57 else if (status != 251) {

58 ratchn (chan);

59 }

&0 break;

61 case 3:  /%--- CHANNEL STATE 3: Online -------==--=-me-mmoee LTS
62 if (status == 3) (

63 btuinp (chan, ibf) ;

64 sprintf (obf, "***\rFrom %s: is\r>", name[chan],ibf);
65 for (i=0 ; 1 < 8 ; i++4)

66 if (i != chan && stata[i] == 3) {

67 btuxmt (1, obf) ;

68 1

69 }

70 btuxmt (chan, "*#* Message sent ***\r>");

71 )

72 else if (status != 251) |

73 rstchn (chan) ;

74 }

75 break:

76 }

77 ]

78 }

79 printf ("TELECONFERENCE DEMONSTRATION OVER, RETURNING TO DOS\n");:
80 for (chan=0 ; chan < 8 : chan++) |

81 bturat (chan) ;

82 )

83 btuend() ;

84}

85

86 rstchn(chan) /* Reset Channel */

87 int chan:

88

89 bturst (chan) ;

50 btulok (chan, 1

91 btuoes (chan, 1

92 btuech (chan, 0) ;

93 btuxmt (chan, "ATEOS0=152=16C14D2\r") ;

94 btucli (chan) ;

95 state[chan]=0; /* How we wait for a status 5 on this channel */
96 )

Figure 5-1: Teleconferencing Example, HAYES hardware

GSBL-196



SECTION 5.0

HAYES AND XECOM EXAMPLES

5.1 TELCONH.C Teleconference, HAYES Version

1 int chan,status,state[8],1;
Declare the integer variables:

chan
state[]

channel, or user number
channel-specific state code:
0 - waiting for incoming call
1 - waiting for 2 seconds after
carrier is detected
2 - wait for user to type in
his name
3 - online
scratch variable, used to count
through the other channels

2 char name[8][21],ibf[128],0bf[163],*malloc();
Declare several character variables:

array of names for each user

input buffer (one user at a time)
output buffer (one user at a time)

the standard memory allocation utility
(it returns a pointer to character)

pefine the "main" function.

name[ ][]
ibf[]
obf[ ]
*malloc()

3

4 main()

5

6

printf ( "TELECONFERENCE DEMONSTRATION . . .\n");

Greeting for the system operator.

7  btuitz(malloc(btusiz(8,128,1024)));

btusiz()

malloc()

btuitz()

specifies the buffer sizes (input 128,
output 1024), and the total number of
channels (8). It also computes the

total number of bytes required for

the Software Breakthrough. Note that in
this example, the total memory required
will not be anywhere near 65535 bytes, so
that we do not use btulsz(), nor check
for an erroneous return value from
btusiz().

The standard dynamic memory allocation
utility.

Initializes the Software Breakthrough and
"formats" its data structures in the
memory block allocated by malloc().

GSBL-197



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

12

13

14

15

16

btudef (0,0x2F0,8);

Define 8 channels (numbered 0 to 7) with an I/O base
address of 2F0 hex. This will work for a
Galacticomm Breakthrough Model 2408 card. For a
single Hayes-compatible modem on the COM1 serial
port, you may wish to change this to

"btudef (0,0x3F8,1)". Of course, you should also
change the number of channels from 8 to 1, which is
hard-coded throughout the program.

for (chan=0 ; chan < 8 ; chan++) |

rstchn(chan);

}
All channels must be reset and subjected to the
initialization sequence. This sequence is performed
by the function "rstchn()", coded on lines 86 to 96.

while (!kbhit()) {
The main loop of the program will continue until the
system operator hits some key on the keyboard.

if ((chan=btuscn()) »>= 0) {
If any channel requires service, its channel number
will be put into the variable "chan".

status=btusts(chan);
The variable "status" now contains the status code
of the channel that requires service.

switch (state[chan]) {
Now, lets treat each of the channel states
separately. The state codes 0-3 are described
above, with the explanation of line 1.

case 0:  /*--- CHANNEL STATE 0: Initialized ---*/
The channel has been reset, at least most of the
way. Two possible cases end up here: (1) we have a
status 5, meaning that the Hayes-protocol command in
the "rstchn()" function has been transmitted to the
modem, and we need to complete the initialization
sequence; or (2) we have a status 3, indicating that
the modem has sent us a message, which may be:
"RING", "OK", "NO CARRIER", "CONNECT", etc. We are
only intereseted in the "CONNECT" messages, as you
shall see.

GSBL-198



SECTION 5.0 HAYES AND XECOM EXAMPLES

17

18

19

20
21

22

23

24

25
26

if (status == 5) {
This is the status 5 that should eventually result
from the btuxmt() call on line 93 in the "rstchn()"
function, below. It means that the command string
on that line has been completely transmitted to the
modem.

Now we will complete the initialization procedure
that was started by the "rstchn()" function. We are
following the procedure described on page 136 for
resetting HAYES category hardware.

btulok(chan,0);
Input lockout was turned on by the "rstchn()"
function, on line 90. Now we can turn it on again.

btuoes(chan,0);
This turns off output empty status. The output
empty status option was enabled by line 91. FWe
needed this to find out when the Hayes
initialization command completed. Turning this
option on is what caused the status 5 that got us to
this code in the first place. We will no longer
take special heed of the transition-to-empty event
of the output data buffer.

}
else if (status == 3) {
A string was received. What could it be?

btuinp(chan,ibf);
Let’s get a hold of it and see .

if (strcmp(ibf,"CONNECT") == 0) {
Was it a message from the modem on this channel,
indicating that a user has called up at 300 baud,
and that we have made connection with him?

btubrt(chan,300);
Yes! Now we must set the baud rate of the UART to
300 baud, because all subsequent communications with
the modem will take place at that 300 baud. We have
just made the transition from command mode to online
mede !

}

else if (stremp(ibf,"CONNECT 1200") == 0) {
Wait a minute, was the message from the modem one
that says that we have established connection with a
1200 baud user?

GSBL-199



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

27 btubrt(chan,1200);
Yes! Now we must set our UART's baud rate to 1200
baud. 1Isn’t this fun!?!

28 }

29 else if (strcmp(ibf,"CONNECT 2400") == 0) {
Or could it be? A 2400 baud user has called us up?

30 btubrt(chan,2400);
Yes, a speedster to be sure. Actually the way this
program is currently written, this statement is
unnecessary -- the UART’s baud rate defaults to 2400
baud after you reset the channel. Even this
"CONNECT 2400" message, like all of the "CONNECT"
messages, has come to us at 2400 baud.

31 }

32 else {

33 break;

34
If some other string is received from the channel,
just ignore it.

35 btucmd(chan,"p");
If one of the above connect messages (for 300, 1200
or 2400 baud) has been received, we now must wait
for the connection to settle. Our modem may have
just changed baud rates, and so might the modem of
the user that has just called up. To make sure we
do not lose any characters, we will pause for 2
seconds before we send the greeting message.

36 state[chan]=1;
Channel state 1 means we are waiting for this 2
second period to pass.

37 }

38 break;

End of the channel state 0 case.

39 case l:  /*--- CHANNEL STATE l: Wait for pause ---*/
We have been waiting for the 2 second pause to
elapse .

40 if (status == 12) {
Do we have a "command-done" status condition?

41 btuxmt (chan,"\rTo log on, please enter your name: ");:
Yes! Say hello to this new caller.

GSBL-200



SECTION 5.0

42

43

44

45
46

47

48

50

51

52

53

54

55

btucli(chan);

HAYES AND XECOM EXAMPLES

Ignore anything he has been saying up tc his point,

by clearing our data input buffer.
btuech(chan,l);
Now we will start echoing his keystrokes to his
terminal.
state[chan]=2;
And he is online!

else {

1f we have received any other status code from this
channel while waiting for the 2 seconds to elapse,

we will assume something bizarre is going on .

rstchn(chan);
. and we will reset the channel.

}

break;
End of the channel state 1 case.

case 2: /*--- CHANNEL STATE 2: Wait for name
We have been waiting for the user to type in his
name .

if (status == 3) {
Have we received something from him?

btuinp(chan,ibf);
Yes, let’s get a hold of it.

sprintf (name[chan],"%1.20s",ibf);
and store it in the name[][] array. This will be

.--*/

the guy’s "handle" for the duration of his session.

In case it is longer than 20 characters, we only
store the first 20. This kind of precaution is
necessary so that whatever a user does, he cannot
crash the system. A good policy.

btuxmt (chan,"Okay, you're online!\r>");
Welcome him to the fray.

state[chan]=3;
Now he is online.

GSBL-201



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

56
57

58

59

61

62

63

64

65

66

67

68
69
70

71

}

else if (status I= 251) {
However, any other status (except input buffer
overflow) . . .

rstchn(chan);
. means that we will hang up on him,

}

break;
End of the channel state 2 case.

case 3:  /*--- CHANNEL STATE 3: Online eekf
Now that he is online . . .

if (status == 3) {
Does he have anything to say?

btuinp(chan, ibf);
Let’s hear it.

sprintf(obf,"***\rFrom %s: %s\r>",name[chan],ibf);
And format a message for everybody else to hear.
The message will include his "handle" that he typed
when he logged on.

for (i=0 ; i < 8 ; i++) {
For every channel . .

if (i != chan && state[i] == 3) {
- . . that is not this channel (the "chan" channel
-- the one sending the message), and that is also
online .

btuxmt (i,obf);
- . . transmit the message.

}
}

btusmt (chan, "#*** Message sent ***\r»");
And tell the sender that the message was sent to
whomever happened to be listening.

else if (status != 251) {
Otherwise, any other condition (except that the guy
typed in too long of a line) . . .

GSBL-202



SECTION 5.0 HAYES AND XECOM EXAMPLES

73

74

76

i §

78

79

80
81
82

83

84

85
86
87

88
89

90

rstchn(chan);
. means that we hang up on him.

}

break;
End of the channel state 3 case.

}
End of all possible values of the channel state.

}
End of check on btusecn() for channels needing
service.

End of the main loop -- system operator has hit a
key.

printf ("TELECONFERENCE DEMONSTRATION OVER . . .\n");
Tell him goodbye.

for (chan=0 ; chan < 8 ; chan++) {
bturst(chan);

Hang up all channels.

btuend();
shut down the Software Breakthrough

And return to the operating system.

rstchn(chan) /* Reset Channel */
int chan;

This function initiates the initialization
sequence recommended on page 136.

{

bturst(chan);

First the channel is reset: data structures are
cleared, and the UART is initialized.

btulok(chan,l);

Lock out input from this channel. This inhibits
trash receive characters from inhibiting the
upcoming transmission by btuxmt().

GSBL-203



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

91 btuoes(chan,l);
Enable the generation of a status 5 when the
transmit buffer goes from non-empty to empty. This
will indicate that the Hayes-protocol command string
has been fully transmitted to the modem.

92  btuech(chan,0);
Turn off the Software Breakthrough’s echo of every
character it receives.

93  btuxmt(chan,"ATE0S0=1S2=1&C1&D2\rt");
Modem command:
EO Modem echo off
S0=1 Auto answer mode on
S2=1 Escape character = control-A
&C1 modem DCD indicates carrier detect
&D2  modem DIR input resets the modem
For more detailed information on these commands, see
your modem manual.

94 btucli(chan);
Clear any trash input from the channel

95 state[chan]=0; /* Now we wait for a status 5 on this channel */
We have done as much resetting of this channel as we
can right now. The only work that remains is to
turn off the input lockout and to turn off status 5
generation. For that we must wait for the status 5
that will come when the above Hayes-protocol command
string has been fully transmitted to the modem.
This is detected and serviced in lines 17-20 of this

program.

96
End of the "rstchn()" function.

GSBL-204



SECTION 5.0 HAYES AND XECOM EXAMPLES

GSBL-205



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

int chan, state(16],othchn;
char name[16](21], ibf[128],cbf[163], *malloc() ;

main ()
{

printf ("TELECONFERENCE DEMONSTRATION -- RIT ANY KEY TO STOP\n");
btuitz(malloc (btusiz (16,128, 1024))) :
btudef (0, 0x2F0, 16) ;
while (!kbhit(}) (
if {(chan=btuscn()) >= Q) {
switch (btusts(chan)) (
case 1:  /*--- STATUS 1: Phone ring or lost carrier —--#/
if (state[chan] == 0) |
btucmd (chan, "Ap") ;
state[chan]=1;

]

else |
bturst (chan) ;
state[chan]=0;

)
break;
case 2:  /*--- STATUS 2: Command complete ---#/
btuxmt (chan, "To log on, please enter your name: ") ;
break:
case 3:  /*--- STATUS 3: Input string available —--#/
if (btuinp(chan,ibf) > 0 && state[chan] == 1) ¢
sprintf (name [chan],"%1.20s", ibf)
btuxmt (chan, "Okay, you’re online!\r>");
state[chanj=2;

else if (state([chan] == 2) |
3printf [obf, "*%&\rFrom %s: ¥a\r>", name[chan], ibf) ;
for {othchn=0 ; otbchn < 16 ; othchn+4) |
if (othchn != chan && state[chan] == 2) (
btuxmt (othchn, obf) ;
¥

}
btuxmt {chan, "*** Massage sent ***\r>");

break;
case 251:  /%-—— STATUS 251: Input buffer overflow —--%/
break;
default: /#*--~ STATUS unknown ---#/
bturst (chan)
state[chan)=0;
break:

)
!
printf ("TELECONFERENCE DEMONSTRATION OVER, RETURNING TO DOS\n")
for (chan=0 ; chan < 16 ; chan++) |{

bturst (chan) ;

}
btuend () ;

Figure 5-2: Teleconferencing Example, XECOM hardware

GSBL-206




SECTION 5.0 HAYES AND XECOM EXAMPLES

5.2 TELCONX.C Teleconference, XECOM Version
101 int chan,state[16],othchn;
Declare integer variables:
chan channel, or user number
state([] user-gpecific state code:
0 - waiting for ring
1 - waiting for carrier,
or waiting for name
2 - online
othchn the other channel
102 char name[16][21],ibf[128],0bf[163],*malloc();
Declare several character variables:
name[ ][] array of names for each user
ibf[] input buffer (one user at a time)
obf[] output buffer (cne user at a time)
*malloc() the standard memory allocation utility
(it returns a pointer to character)
103
104 main()
Define the "main" function.
105
106 printf("TELECONFERENCE DEMONSTRATION . . .\n");
Greeting for the system operator.
107 btuitz(malloc(btusiz(16,128,1024)));
btusiz() specifies the buffer sizes (input 128,
output 1024), and the total number of
channels (16). Computes the total number
of bytes required for the Software
Breakthrough
malloc() The standard dynamic memory allocation
utility.
btuitz() Initializes the Software Breakthrough and
"formats" its data structures in the
memory block allocated by malloc()
108  btudef(0,0x2F0,16);

Define 16 channels (numbered 0 to 15) with an I/0
base address of 2F0 hex. This would also work for
the 4 channels of a Model 4.

GSBL-207



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

109 while (!kbhit()) {
The main loop of the program will continue until the
system operator hits any key.

110 if ((chan=btuscn()) »>= 0) {
If any channel requires service, its channel number
will be put in the variable "chan".

111 switch (btusts(chan)) {
Now let’s treat each possible status condition
differently.

112 case 13  /*--- STATUS l: Phone ring/lost carrier ---#/
A status code 1 can mean two very different things.
If we are on-hook, it means the phone is ringing,
In this case we will want to answer it. If we are
off-hook, it means that we have lost the carrier
signal. In that case we will want to hang up that
channel (go on-hook).

113 if (state[chan] == 0) {
If this channel state is zero, then the status 1
means that we detect the ringing of an incoming
call.

114 btucmd(chan, "Ap");
We will answer the incoming call ("A" answer
command), and give the channel time to settle ("p"
pause command). Answering a channel consists of
going "off-hook" and beginning to sound the answer
carrier signal.

115 state[chan]=1;

Re now expect originate carrier to be detected.
116 }
117 else {

If the channel state is nonzero, then the status 1
means that we are no longer getting the quiescent
carrier signal from this channel -- the user has
probably hung up on us .

118 bturst(chan);
. 80 we hang up on him .

119 state[chan]=0;
. . . and wait for more calls on this channel.

GSBL-208



SECTION 5.0 HAYES AND XECOM EXAMPLES

120 }
121 break;
122 case 23  /*--- STATUS 2: Command complete ---*/

The status code of ‘2’ means that the command string
specified using btucmd() (in line 14) has completed
successfully. This means we have detected originate
carrier from this channel.

123 btuxmt (chan,"To log on, please enter your name: b 1
Let’s ask this caller to give us his name.

124 break;

125 case 3:  /*--- STATUS 3: Input string available ---*/

This status code means that a carriage-return
terminated string has been received from this
channel. Either this is a new caller’s name (in
response to the question in line 23), or this is a
message that he wants sent to other users.

126 if (btuinp(chan,ibf) > 0 && state[chan] == 1) {
We have gotten a string of at least one character,
and we are expecting a new caller’s name.

127 sprintf (name[chan],"%1.20s",ibf);
Let’s remember his name, but limit its length to 20
characters maximum.

128 btuxmt (chan,"Okay, you’re onlinel!\r>");
Let him in the door. Note the ">" prompt for his
first message.

129 state[chan]=2;
We will treat all further information from him as
messages to other users.

130 }

131 else if (state[chan] == 2) {
Now, here is the case where an input string came in
and we were expecting a message from him.

132 sprintf (obf,"***\rFrom %s: %s\r>",name[chan],ibf);

Here we format the complete message to be sent to
the other users who are online.

GSBL-209



THE

133

134

135

136
137
138

139
140

141

142

143

144

145

146
147

GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

for (othchn=0 ; othchn < 16 ; othchn++) {
Check every channel . . .

if (othchn != chan && state[chan] == 2) {
. . every channel cther than "chan", the one that
is sending the message, that is. If there is a user
on that channel, and he is online . .

btuxmt (othchn,obf) ;
Transmit this guy’s message to the other user.

}

btuxmt (chan, "#** Message sent ***\r>");
Let the sender of the message know that he is being
heard.

}
break;

case 251: /*--- STATUS 251: Input buffer overflow
This status indicates that the input from the user
on this channel has exceeded the size of the input
buffer (128 bytes, as specified in btusiz, line T)s
He will just ignore this condition. This will
result in missing characters from the user’s input
string.

break;
default: /*--- STATUS unknown ---*/
Several status codes indicate that the answer
command (line 14) was not successful. These
conditions are treated in the same way:

bturst(chan);
hang up the channel .

state[chan]=0;
. . and wait for the next call on it.

break;

}
This is the end of the possible status codes.

GSBL-210

...*/



SECTION 5.0 HAYES AND XECOM EXAMPLES

148

149

150

151
152
153

154

155

This is the end of the case where btuscn() indicates
that some channel needed servicing.

The system operator has hit a key . . .

printf ("TELECONFERENCE DEMONSTRATION OVER . . ."):
Tell him goodbye . . .

for (chan=0 ; chan ¢ 16 ; chan++) {
bturst(chan);

}
And reset every channel, hanging up any calls that
may have been in progress.

btuend():;
De-install the Software Breakthrough (a very
important step).

}
and that's all, folks.

GSBL-211



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

6.0 ILAN PROGRAMMING

Socket Numbering

Socket Numbers from Novell

The eight socket numbers 80BB through 80C2
(hexadecimal) are registered with Novell by
Galacticomm for use in The Major BBS software.
Novell assigns "well-known" socket numbers for
released software out of the range 8000 to FFFF.
Alternatively, socket numbers 4000 through 7FFF are
available for dynamic or experimental usage. Socket
numbers 0000 through 3FFF are reserved by Novell,
and may be used in accordance with Novell's
instructions (e.g. such as for socket 0452, Service
Advertising Protocol).

A value of zero for the socket parameter of btusdf()
means pick an available dynamic socket number (4000
to 7FFF). In this case, the actual socket number
assigned is available in the global integer variable
"lanscp" (see page 32).

Byte Order

You will encounter a socket number with reversed byte order
when you are dealing with the IPX headers yourself on IPX
Virtual channels in raw-packet mode (page 219). This only
applies if you have the Advanced LAN Option.

WARNING: The "length", "dstsoc" (destination
socket), and "srcsoc" (source socket) fields of
an IPX header contain values stored with the
most-significant-byte in the lower address.

This is foreign to Intel processors, so you will need to
remember to swap the bytes of these fields.

GSBL-212



SECTION 6.0 LAN PROGRAMMING

The following macro might be helpful for this (and is included
in IPX.H):

#define hilo(i) (((unsigned)(i)>>8)|((unsigned char)(i)<<8))

This simply swaps the two bytes of a 16-bit "int" or
"unsigned" variable.

Multiple Channels on the Same Local Socket

You can define several channels or several channel groups on
the same local socket number if you follow a few rules.

WARNING: Do not define IPX channels (Direct or
Virtual) on the same local socket number as SPX
channels.

WARNING: If you define more than one channel group
on the same local socket number, the groups must use
consecutive channels.

You can define multiple channel groups on the same local
socket number, as long as the groups are defined over
consecutive channel numbers, and all groups defined on a given
socket are either IPX, or all are SPX -- don’t mix and match
IPX and SPX on a single socket. (You can however, mix IPX
Direct Circuits with IPX Virtual Circuits on the same local
socket.)

WARNING: Do not connect IPX channels with SPX
channels.

When talking GSBL/LAN to GSBL/LAN over LAN channels, don’t
connect IPX with SPX (You can however connect an IPX Direct
Circuit with an IPX Virtual Circuit.)

Do not connect multiple IPX channels between two
nodes (computers) using the same local socket number
on both ends.

GSBL-213



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

You can have several SPX connections on one network/node/
socket talking one-to-one with several SPX connections on
another network/node/socket. You can’t do this with IPX
however, The only way IPX has of distinguishing what channel
an incoming IPX packet is for is (1) the local socket (of
course) and (2) the network/node/socket that the packet
originated from. SPX has connection ID’s to distinquish who's
talking to who, and there can be several on one socket. To
have multiple IPX connections between two nodes using
GSBL/LAN, either the local end, the remote end, or both, must
use separate sockets.

6.1 LAN Channel State-Machines

IPX Direct Circuit Call

terminating:
bturst(chan); (direct circuit address is subsequently
undefined)

incoming or outgoing:
btucmd(chan,"WOOOO00010000COA810184007M");

IPX direct channels are always in the "communicating" state.

IPX virtual Circuit call

terminating:
bturst(chan); (channel reverts to raw-packet mode)

incoming:
btutrg(chan,30); (prep for incoming 30-byte IPX header)
btusts(chan) ==
btuict(...) returns a 30-byte IPX header (page 219),
and inside it, the source network/node/socket
contains the 12-byte node address in binary
btucmd(chan, "W<24-digit node address in ASCII hex>M");

outgoing:
btucmd(chan,"WO0000OGlOOOOCOASlOlBQOO?M");

states:

raw-packet mode
communicating

GSBL-214



SECTION 6.0 LAN PROGRAMMING

SPX Call

terminating when in session:
btucmd(chan,"T")
wait for btusts(chan) == 36 (You should timeout this
wait, in case a status 36
never comes for some reason)
bturst (chan) (optional)

terminating otherwise:
bturst(chan)

incoming:
btucmd(chan, "L");
wait for btusts(chan) = 34

outgoing:
btuemd(chan, "®000000010000C0A810184007M" ) ;
wait for btusts(chan) == 35

states:
idle
waiting for incoming call
waiting for outgoing call
connection established
terminating

6.2 The SPX Channel State-Machine

Each SPX channel is always in one of these five states:

Idle
Listening
Outdialing
Connected
Terminating

GSBL-215



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Here’s a chronological diagram of how two applications based
upon the GSBL/LAN might communicate over SPX channels:

Calling party Listening Party

btucmd(chan,"L");
btucmd(chan, "W000000010000C0A810184007M") ;

status 35 status 34

btucmd(chan,"T");

status 36 status 31

Note: once the link is established it is symmetrical; either
channel can terminate it. In the above diagram this means,
for example, that the listening party might decide to
terminate the connection with btucmd(chan,"T"). It would soon
get a status 36, and the calling party would get a status 31.

If either party abruptly aborts the connection with bturst(),

the other party will eventually get a status 39. (The
aborting party will get no special status code.)

GSBL-216



SECTION 6.0 LAN PROGRAMMING

Idle SPX Channel

All SPX channels become idle immediately after any of the
following:

o Definition by btusdf() (only allowed once per
program load)

o Reset by bturst() (may be done at any time)

o Status 31: connection explicitly terminated by
the remote party

o Status 39: watchdog termination, meaning the
other party has just disappeared, or scme other
transmit or connection error (see page 158)
When a channel is idle, and only when a channel is idle, you
can issue dialout or listen commands.

Listening SPX Channel

After issuing the listen command (e.g. btucmd(chan,"L")), the
channel is in the listening state, and ready to receive an
incoming call from another network party (using SPX). Status
34 indicates when such a call has come in and been completed.
In that case, the channel moves to the connected state.

The listening state has no timeout, and a channel may remain
in the listening state indefinitely. To give up waiting for
an incoming call, and return a channel to the idle state, call
bturst().

Outdialing SPX Channel

After issuing the dialout command (e.g. btucmd(chan,"W...M")),
the channel is in the outdialing state, and trying to make
connection with the network address specified in the dialout
command. Status 35 indicates when the call has gone through
and the channel is in the connected state.

The dialout command may timecut, in which case a status 39
indicates that the call is aborted and the channel is
reverting to the idle state. To give up waiting for an
outgoing call to complete, and return a channel to the idle
state, call bturst().

GSBL-217



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Connected SPX Channel

After an SPX channel has established a connection with another
party on the network, you can transmit to the party (btuxmt(),
btuxct()) and receive from it (btuinp(), btuict()). Now most
of the hardware specifics vanish, and the channel acts much
like any other channel on the GSBL.

SPX connections that have been completed (via status 34 or 35)
can end in one of four ways:

© Explicitly, by issuing the "T" command and then
waiting for status 36

© Remotely, by receiving a status 31 (other side
terminated - see page 156)

o Abortively, by resetting the channel (bturst())

©  Unexpectedly, by receiving a status 39 (watchdog
abort)

Terminating SPX Channel

When you issue the terminate command (e.g. btucmd(chan,"T")),
the channel moves to the terminating state. This is the
polite way to end a connection, because the SPX system tries
to make sure the other party knows the connection is ending.
To end a connection quickly, with no muss and no fuss, just
call bturst(), and the channel moves immediately to the idle
state.

After issuing the terminate command on a channel that is in
the connected state, the channel moves to the terminating
state. Pretty soon, a status 36 indicates that the other
party has acknowledged the termination and the connection has
ended gracefully. The channel returns to the idle state.

On the other hand, a status 39 indicates that the termination
notice was not acknowledged, and we can’t be sure what the
other party thinks. After a status 39, the channel ends up in
the idle state.

GSBL-218




SECTION 6.0

6.3 IPX Virtual

LAN PROGRAMMING

Circuits in Raw Packet Mode

30

to

576
bytes

\

Figure

30
bytes

6-1:

O U1

10

16

18

22

28

30

chksum
length

trnspt
paktyp

dstnet

dstnod

dstsoc

srcnet

srcnod

Srcsoc

datbuf

VAN
VoN
NNV
‘\/ N

o

]

(set by IPX)

Total number of bytes, incl header
Range 30-576, WARNING: MSB FIRST!
(set by IPX)

Packet type, 4=IPX packets.

Destination network, 4 binary
bytes, right-justified, and zero-
filled

Destination node, 6 binary bytes,
right-justified, and zero-filled

Destination socket, WARNING: MOST-
SIGNIFICANT-BYTE FIRST!

Source network, 4 binary bytes,
right-justified, and zero-filled.

Source node, 6 binary bytes,
right-justified, and zero-filled.

Source socket, WARNING: MOST-
SIGNIFICANT-BYTE FIRST!

Data buffer, containing 0 to 546
bytes

IPX Virtual Raw Packet Format

GSBL-219



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Before transmitting a raw IPX packet, (that is, before
transmitting a packet on an IPX Virtual channel in raw-packet
mode), you must set the following fields of the packet:

length

paktyp
dstnet
dstnod
dstsoc

datbuf

Length of entire packet, including header,
range 30 to 576 WARNING: most significant byte
first

Packet type (4 for IPX)

Destination network

Destination node

Destination socket WARNING: most significant
byte first

Data buffer, 0 to 546 bytes

The following fields are automatically set by IPX:

chksum
trnspt
srcnet
srcnod
srcsoc

Checksum
Transport control
Scurce network
Source node
Source socket

Incomplete Packets Under Raw-Packet Mode

WARNING: You can only transmit complete packets in
raw-packet mode. Fill the "length" field (in hi-lo
byte order) with the total number of bytes in the
packet, including the IPX header. The GSBL will use
this field to determine packet boundaries. If you
return to btuscn() in your main loop with a partial

packet in the output buffer, the packet may be lost.

Also, if you don't make sure that the length byte
contains the actual packet length, or if you
otherwise screw up packet alignment, then total
trash could be transmitted via IPX, possibly
clobbering your file server.

You could use this property (that partial raw packets will be
lost) to detect when a packet transmitted in raw-packet mode
has actually been totally and completely transmitted.

GSBL-220



SECTION 6.0 LAN PROGRAMMING

First, let’s look at the problem: it is not enough just to
poll at btuoba() (or to enable and then wait for status 5) to
know when transmitting is done -- the GSBL may be done with a
packet, but the low level Netware IPX interface may not have
completed the associated "Send Event Control Block". So you
could diligently make sure the output buffer was empty, and
then innocently call bturst() thereby cancelling the data
before it went out! You need to make sure IPX has finished
transmitting the packet.

If after transmitting a raw packet, you "transmit" a single
NUL (as in btuxct(chan,1,"\0")) and then wait for btucba()

to indicate an empty buffer (when it returns output buffer
size minus 1), the raw packet preceding the NUL will have been
completely transmitted, and the NUL will be discarded.

struct {
struct ipx ipx;
char data[NBYTES];
} ipxpkt;

/* Fill up ipxpkt somehow. */

btuxct (chan, sizeof (ipxpkt),&ipxpkt);

btuxct (chan,1,"\0");

while (btuoba(chan) < OSIZE-1) {
btusen();

bturst(chan);

This code is an excerpt only (btusiz(), btuitz(), btusdf(),
btuend() calls are all essential but they are not shown
above). And the while-loop should really have a timeout. And
you would rarely call btuscn() only inside a loop like that.
But this should give you an idea of what's invelved in this
little trick to detect total completion of raw packet
transmission.

GSBL-221



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

IPX Raw-Packet Transmit Example

For example, let’s say you wanted to transmit the alphabet on
an IPX Virtual channel in raw-packet mode to socket 4007 hex
on node 2 of network 1. Assume you are using local socket
5008 hex. Here is code that would do this:

#define hilo(i) (((unsigned)(i)>>8) | ((unsigned char)(i)<<8))

struct ipxhdr { /* an IPX header contains.., */
int chksum; /* checksum */
int length; /* 30-576: header PLUS rest of packet (hi-lo) */
char trnspt; /* IPX sets to 0 %/
char paktyp; /* D=unknown 4=1PX 5s5PX */
char *stnet[4]; /* destination network */
char dstnod[6]; /* destination node */
int dstsoc; /* destination socket (hi-lo) *f
char srenet[4]; /* source network */
char srcnod[é); /* source node */
int sresoc; /* source socket Chi-loy */

3

#define IPXMAX 546 /* max length of data field of IPX packet */

struct ipxpak ( /* an IPX packet contains... */
struct ipxhdr hdr; /* IPX header */
char datbuf [1PXMAX] ; /* 0 to 546 data bytes */

bl

struct ipxpak xmtpak;

char net[1=(0,0,0,1);

char nod(1=(0,0,0,0,0,2};

char atphabet[]="ABCDEFGHIJKLMNOPQRSTUVUXYZ";
int chan=0;

char *malloc();

maing)
¢

btuw‘tz(malloc(btusiz(1,256,2048)));
btusdf(chan, 1,6,0x5008,2);
xmtpak.hdr. length=hilo(26); /* xmtpak.hdr. length=0x1A00 */
xmtpak .hdr.paktyp=4;
movmem(net, xmtpak.hdr.dstnet, 6);
mwnem(nod,xmtpak.hdr.dstmd,a);
xmtpak.hdr.dstsoc=hilo{0x1.007); /* xmtpak.hdr.dstsoc=0x0740 */
movrnem(a\.phabet,mtpak.datbuf,26);
btuxct(chan, &xmtpak, sizeof(struct ipxhdr)+26);
while(btucba(chan) < 2047) (
btusen( );

btuend();

GSBL-222



SECTION 6.0 LAN PROGRAMMING

Note: this program is shown as a coding example and is almost
useless otherwise, especially in its limited versatility and
in its failure to check for erroneous return codes.

The calls to btusiz(), malloc(), and btuitz() prepare for one
channel with a 2048-byte output buffer and a 256-byte input
buffer.

The call to btusdf() defines one IPX Virtual channel using

socket 5008 hex, with 2 ECB’'s. Note that the specification of
the socket number here uses natural (Intel) byte order.

6.4 Galacticomm Terminal Configquration (GTC) Protocol

GIC enables one GSBL-based program to tell another that it is
willing to preprocess the other’s ASCII input.

Advanced LAN

Channel
Terminal Terminal Bulletin Bulletin
Emulation Emulation AN Board Board
Program | | GSBL AV GSBL || Program

"G" command --->
<- GTC Protocol -»
<--- status 40-44

For example, a terminal program based on the GSBL can tell a
BBS program based on the GSBL that the terminal will buffer
line input before sending it to the BBS.

In this section we’ll talk about the "terminal" and
the "BBS" as the GSBL program vclunteering to
preprocess input and the GSBL program that
relinquishes input preprocessing, respectively.
Other applications could make use of this feature,
but the terminal/BBS situation is why GTC was
developed, and makes for a clear example.

In this case, each of the programs (terminal and
BBS) consists of a copy of the GSBL and an
application program that uses it.

The usurpation of the BBS's input handling is detected and
allowed by the BBS GSBL and is transparent to the BBS
application program. GIC service starts with the terminal
program sending a "greeting message" to the BBS GSBL. After

GSBL-223



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

that, the BBS GSBL will notify the terminal GSBL as to the
current input mode. The terminal GSBL passes all such GTC
information, in the form of status codes, to the terminal

application program for processing.

For enhanced compatibility, a GTC-compatible BBS will not
require a GIC-supporting terminal program. It is up to the
terminal to request GTC before the BBS starts depending on it.
At the same time, if a non-GTC BBS ignores the terminal’s
initial greeting message, the terminal GSBL will not generate
GIC status codes.

If you don’t want the main program to have to deal with GTC,
then just don’t ever send the "greeting message" (don't call
btuemd(chan, "G")).

A new greeting must be issued after a channel reset
from either the BBS or the terminal side.

Several varieties of input are supported, so that features
like editor input word-wrap, teleconference chat, and password
input operate transparently -- that is, just as they would
calling over a non-LAN GSBL channel. The special case of
suppressed output during line input (as is used so well in the
teleconference) can be handled at the option of the terminal
program: (1) suppress the output while entering a line; or
(2) go ahead and display the output, but "move" the input line
down to the new prompt.

The GTC protocol for IPX packets is based on:

IPX header with packet type 0 (unknown packet)
For SPX packets:

SPX header with data stream type FO hex
Data fields:

Greeting message:
(empty data buffer)

The terminal sends this to the BBS (the G
command) to volunteer to preprocess the BBS’s
ASCII input. The BBS GSBL takes note that it
is communicating with a GTC-compatible program.

GSBL-224



SECTION 6.0 LAN PROGRAMMING

Input mode message:
"GTCI" ("I' means input confiquration)
1 byte inmode input mode (see below)
1 byte maxinl maximum input line length
(0=unlimited)

These messages are transmitted from the BBS to
the terminal to tell the terminal how to treat
the BBS's input (that the terminal is gathering,
for example, from an operator at the keyboard,
or from a disk file).

Input modes (decimal)

40 Locked out

41 Binary

42 ASCII line mode without echo

43 ASCII line mode with echo (limit line length)

44 ASCII line mode with echo and word-wrap (limit line
length)

These input modes are also the status codes that
will eventually appear to the terminal application
program when it calls btusts(). When the status
code is 43 or 44, another status byte follows
immediately, which is the input line length, where 0
is unlimited. See starting on page 159 for more
details on these status codes.

Ctrl-S Pause with GTC

Also we recommend that a terminal program locally process the
Ctrl-S pause of BBS ocutput. This function cannot be handled
by the BBS due to packetization: by the time the BBS would
get a Ctrl-S, it may have already shipped out several huge
packets.

GSBL-225



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

7.0 X.25 PROGRAMMING

The features described in this section are available only with

the X.25 Software Option for the GSBL. See page 12 for an
overview of how X.25 works.

The GSBL handles low-level communications with X.25 and LaN
channels differently than with modem or serial channels.

While modems or serial ports must be timer-interrupt driven at
the byte level, X.25 and LAN channels are handled without
interrupts, at the packet level.

The btuxmt() output routine still puts data into a circular
buffer. And the btuinp() routine still gets data out of
ancther circular buffer -- these aspects of the GSBL have not

changed. However, the interaction between these buffers and

the X.25 or LAN hardware takes place transparently during your
call to btusen().

So remember that only after your call to btusen():

0 Will received data become available for:
btuibw(), count of input bytes waiting
btuinp(), ASCII input
btuict(), binary input

© Does transmitted data, specified by:

btuxmt (), AscII output
btuxct(), binary output

actually get formed into packets and
transmitted, and will:

btuoba(), output bytes available
indicate room in the output buffer
© Will monitored output become available:

btumon(), start monitoring a channel
btumds(), report latest output to that channel

(similarly with btumon2() and btumds2())

Simulated keystrokes on the monitored channel (btumks() or

btumks2()), however, immediately become available in the input
buffer.

GSBL-226



SECTION 6.0 X.25 PROGRAMMING

7.1 Handling an Incoming Call

When an incoming "call request" packing is received by the BBS
on an X.25 virtual circuit:

btusts() returns status 3
btuinp() returns a string of the form:

"RING <caller> CALLING <callee>"
Hhere <caller> is the decimal network address (if
available) for the source of this call, and <callee> is
your network address. If you set x25udt to 1, then
btuinp() will return:

"RING <caller> CALLING <callee> <user data field...>"
See page 35 for details on the limitations of this method.

To answer an incoming call:

btucmd("A"); (which will immediately generate a status 22,
see also page 68)

7.2 Making an Qutgeing Call

To place an outgoing call on an X.25 channel, issue any of the
following command string formats using btucmd(chan,cmdstg)

(page 58):

R<caller>,<callee>/<user data field>M

R<callee>/<user data field>M

W<caller>,<callee>M

H<callee>M
The <caller> and <callee> fields are decimal addresses, up
to 16 digits each. The <user data field> is specified in

hexadecimal. See page 78 for more details about making an
outgoing call on an X.25 virtual circuit.

GSBL-227



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

GSBL-228



INDEX

16550 UART, 2, 10, 92, 128, 177
8250 UART, 9, 10, 13, 38

baud rates, 39
8253 Timer, 110

A

Advanced LAN Option, 7, 11-12

ANSI graphics, 79, 80, 190

Answer carrier, (see Carrier signal)

Answering calls, (see Incoming calls)

Applications, 196-204, 206-211
sample code, 45, 49, 50, 59, 82, 118, 136, 174, 184, 196,

206

scanning status, 141

Architecture, 5-20

ASCII input mode, 17-18, 48, 86, 108, 154, 164, 167, 183, 185,
192

ASCII output mode, 19-20, 94, 114, 134, 143, 172, 187-188,
189-191

Auto answer, 137

Baud rate
8250 UART, 39
Breakthrough Model 2408, 38
determining 1200 or 300 baud on XECOM hardware, 162
maximum baud rate, 128
setting with btubrt(), 37-39
setting with btucmd(), 59, 64, 65
Binary input mode
block input, 29, 105, 167
overflow, 164
stream input, 104
versus ASCII, 17-18
Binary output mode, 19-20, 182
btubrt(), 37-39, 199, 200
btubse(), 17, 40-41, 48
btubsz(), 42-44

GSBL-229



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

btuche(), 18, 45-46

btuchi(), 18, 45, 47-52, 183

btuclec(), 53, 161

btucli(), 54, 201, 204

btuclo(), 55

btucls(), 56

btuemd(), 58-80, 157, 200, 208
command completion, 154, 155
invalid command, 155, 161, 162

btucpe(), 81

btudef(), 82-84, 176, 198, 207

btudtr variable, 22

btueba(), 85

btuech(), 18, 48, 52, 86-88, 201, 204

btuend(), 89, 203, 211

btuerp(), 48, 90-91

btuffo(), 92-93, 128

btuhcr(), 94, 189

btuhdr (), 95-97

btuhit(), 98

btuhpk (), 99-100

btuhrt variable, 23

btuhwh(), 101-102

btuibw(), 103

btuica(), 104

btuict(), 48, 105-106
versus btuica(), 104

btuinj(), 107

btuinp(), 108-109, 199, 201, 202, 209
versus btuict(), 105

btuirp(), 110

btuitm(), 111

btuitz(), 82, 112-113, 197, 207
versus btuitm(), 111

btulan variable, 24

btulfd(), 18, 94, 114, 189

btulek(), 48, 115, 199, 203

btulsz(), 48, 116-118
declaration required, 118

btumds(), 119, 125, 127

btumds2(), 120

btumil(), 18, 48, 121-122

btumks(), 123, 125, 127

btumks2(), 124

btumon(), 119, 123, 125-126

btumon2(), 120, 124, 127

btumxs(), 83, 92, 128-129, 140

btuoba(), 130

btuces(), 131, 199, 204

btuolk(), 132

btupbe(), 99, 133

GSBL-230



btupmt(),
bturep(),

INDEX

134, 189
135

bturno variable, 25

bturst(),
bturti(),
btuscn(),
btuscr (),
btusdf (),
btuset(),
btusiz(),

32, 44, 136-139, 203, 208, 210, 211
140

141-142, 198, 208, 226

143, 189

32, 144-146

147-148

48, 149-150, 197, 207

btusrs variable, 26

btusts(),
btutrg(),
btutrm(),
btutrs(),
btutru(),
btutsw(),
btuudf (),
btuusp(),

152-166, 198, 208
18, 167-168

17, 48, 169

170

17, 48, 171, 189
172-175, 189, 193
176

177+178

btuver variable, 27
btux25 variable, 28

btux29(),
btuxct (),
btuxlt(),
btuxmn(),
btuxmt(),

209,
btuxnf (),

179-181

19, 182

17, 18, 48, 183-186

187-188

19, 94, 134, 136, 143, 189-191, 200, 201, 202, 204,
210, 226

17, 48, 99, 189, 192-193

Buffers, 5
command output, 53, 59, 165

data

data

echo

capacity, 165

input, 42, 48, 54, 104, 105, 108, 164, 202, 210
capacity, 103, 116, 149

number of bytes available, 103
output, 42, 55, 165, 182, 187, 189
blocking, 187, 191

capacity, 116, 149

empty status code, 131

room left, 130

output, 51, 85, 164

capacity, 164

Mcnitored display, 5, 119, 120

capacity, 119, 120

overflow status codes, 164-165
respecifying data input and output capacities, 42
Simulated keystroke, 5, 123, 124

capacity, 123, 124

status input, 56, 107, 153, 165

capacity, 166

Busy signal, 72, 75, 161
Byte order (LAN), 32, 212

GSBL-231



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

C

Carrier Signal
analysis on XECOM hardware, 70
answer carrier, 72, 75, 137, 208
carrier detect, 72, 75, 138, 199, 209
XECOM hardware, 162
lost carrier, 10
HAYES hardware, 155
XECOM hardware, 154, 208
originate carrier, 72, 209
Cause field (X.25), 96
CCITT, 12
Character count, 135, 147
Characters
Abort, 48, 155, 170, 171
Backspace, 17, 40-41, 48, 121, 183, 185

Carriage return, 9, 17, 18, 48, 94, 105, 108, 109, 114,

154, 169, 172, 173, 174, 183, 185,
(see also Hard and Soft carriage returns)
Control-0., 170, 171
Control-s., 81
Control-T., 133
linefeed, 94, 114, 173, 174
Pause, 81, 133
special characters of the ASCII input mode, 17
XON/XOFF (resume/pause), 48, 192
chiinj(), 47, 49, 100, 140
chiinp(), 47, 49, 100, 140
chious(), 47, 49, 100, 140
chiout(), 45, 47, 49, 100, 140
CoMl and coM2, 9, 10, 83
Command codes, 58, 64-80
CTS/RTS hardware handshaking, 101

Defining channel groups, 144
Defining channels, 82

un-defining channels, 176
Diagnostic field (X.25), 96
Diagnostics

XECOM hardware, 58, 66, 70, 71
Dial out

LAN, 76-77, 157

SPX, 217

X.25, 78-79
Dial tone, 72, 162
Dialing, 66, 67

GSBL-232



INDEX

Direct circuits, 11

Discrimination between Hayes and Xecom hardware, 83, 139
Distinguishing 300 and 1200 baud on XECOM hardware, 162
DOs, 89

Double spacing, 114

DTMF: Dual-tone, Multi-frequency, (see Touch-tone)

DIR signal, 22

ECB’s (Event Control Blocks, LAN), 95
ecbgsbl structure, 96
Echo, 48, 85, 86, 119, 120, 121, 164, 201, 204
Echo-plex, 52, 86
Echo
btuche() handling when buffer becomes empty, 45
disabled in Binary input mode, 167
on X.25 channels with btuchi(), 52
remote PAD programming (X.25), 52, 75, 86-88
Emulation, 119, 120, 123, 124, 125, 127
Ergo Computing, 112, 113
Error counts, 135, 147
Escape sequence, 138

F

FIFO on 16550 UART, 92, 128, 177
Framing commands, 58, 59, 60, 62, 80
Framing errors, 48, 90, 135, 148, 184, 185

G

GalactiBoard, 2, 10

GalactiBox, 2

Greeting command (LAN), 69, 71

GSBL, 1

GSBL echo, 86

GIC (Galacticomm Terminal Configuration), 223-225
Greeting command, 11, 69, 71
status codes, 159-161

GSBL-233



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

H

Half-duplex, 86
Hanging up, 115, 136, 203, 208, 210, 211
on shutdown, 89
Hard carriage return, 94, 173, (see also Output word wrap)
Hardware, 2, (see also your installation manual)
Hardware Category
definitions, 7-14, 145
HAYES, 7, 13, 196-204
distinguishing from XECOM, 139
resetting procedure, 136
LAN, 11, 212-225
symbols, 13
UART, 10, 13
X.25, 12, 226-227
XECOM, 9, 13, 206-211
Hardware handshaking, 101
HAYES category hardware, 8-14, (see also Hardware Category)
Header information, 95
High-rate (65536 Hz) counter, 23

I/0 addressing, 82, 198
ictact variable, 29
Idle receiver, special handling through btuche(), 45
Incoming calls, 10, 38, 64, 68, 161, 199, 208
LAN, 157, 217
X.25, 68, 227
Initialization, 82, 111, 112, 136, 144
Initializing channels, 82, 144
Input buffers, (see Buffers)
Input line, length limitation, 121
Input modes, 17-18, (see also ASCII, Binary input modes )
GTC (LAN), 159-161
Input processing order, 48
Input word wrap, 48, 121
Input, suspension of cutput during, 182, 189
Interrupts, 98, 110, 111, 140
for UART polling, 177
IPX Direct circuits, 11, 214, (see also LAN access)
IPX Virtual circuits, 11, 213, 214, 219, (see also LAN access)

GSBL-234



L

LAN access
Advanced LAN Option, 7, 11-12
btusen() polling, 141
byte order, 32, 212
capabilities and status, 24
commands, 63
defining channel groups, 144-146
ECB, 95
ECB’s, 95
error status, 158
GrC, 11, 69, 159-161, 223-225
hardware category, 11
IPX Direct circuits, 214
IPX Virtual circuits, 213, 214, 219
listen for SPX connection, 71, 157, 217
local address, 96
outdial, 76-77, 157
programming, 212-225
resetting, 139
sockets
multiple channels on, 213
numbering, 212
opened by btusdf(), 32
SPX circuits, 213
SPX connecticns, 31, 215, 215-223
SPX revision, 30
state-machine, 214
statistics, 135, 147
status codes, 156-161
terminating SPX session, 74, 156, 157, 218
lanrev variable, 30
lansca variable, 31
lansop variable, 32
Line length limitation on input, 121
Listen for SPX connection (LAN), 71, 157, 217
Local address (LAN), 96
Local emulation, 125, 127, 139
Locking out input, 115
Locking out output, 132
Logging off, (see Hanging up)
Losing received characters, 92
Lost carrier, (see Carrier signal)

INDEX

GSBL-235



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Major BBS, The
btuche() use, 46
buffer sizes, 43
non-hardware channels, 128
output abort character, 170, 171
output word wrap, 174
pause character, 81, 133
Memory requirements, 111, 112, 116, 149
Models of the Breakthrough card, 2, 84
all models
automatic discrimination between, 83, 139
initialization, 82
Model 16 card, 9
programming example, 206
Model 2408 card, 9, 60, (see also Hardware Category, HAYES)
baud rates, 38
programming example, 196
resetting procedure, 136
Model 4 card, 9
programming example, 206
Models 16 and 4, (see Hardware Category, XECOM)
Modems, 7-10
Modes, input, 17-18, (see also ASCII, Binary input modes)
Modes, output, 19-20, (see also ASCII, Binary output modes )
Monitoring a channel, 123, 124, 125, 127
Monitoring a channel’s output, 119, 120
Multi-tasking environments, 98, 111
Multi-user architecture, 5

Non-hardware channels, 26, 83, 84, 125, 127, 128, 139, 165
Novell, socket numbers, 212
Number of channels, 116, 149

licensed, 26

limitations, 84, 139, 165

GSBL-236



INDEX

o

Online mode, 72
Originate carrier, (see Carrier signal)
0s/2, 98, 111
0s/286, 112, 113
Outgoing calls, 10, 72, 75
LAN, 76, 157, 217
X.25, 78, 163, 227
Output abort, 155, 170, 171
Output buffers, (see Buffers)
Qutput data blocks, 187, 191
suspended during input, 182, 189
Output modes, 19-20, (see also ASCII, Binary output modes)
ASCII, 187-188, 189-191
Binary, 182
Output pausing, 99, 132
Output word wrap, 94, 143, 172-175
example, 175
Overrun, 48, 90, 92, 184, 185
Overrun errors, 135, 148

P

Packet count, 135, 147

Packet switching network, 12, (see also X.25 access)
PAD programming (X.25), 86, 96, 156, 179

Page mode, 192

Parity, 48, 58, 67, 90, 184, 185

Pause, 73, 81, 99, 132, 133, 157, 200, 208

PC XNet card, 2

Prompt character, 134

Protected mode, 112, 113

Pulse dialing, 73, 162

Raw packet mode (LAN), 219
Real-time interrupt handling, 98, 110, 111, 140
Real-time second counter, 33
Real-time seconds counter, 23
Registration number, 25
Reseting a channel, 80, 136
Resetting a channel
with HAYES category hardware, 136, 203
Ring-back, 72, 163
Ringing phone, 154

GSBL-237



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

Rotary dialing, (see Pulse dialing)
Routines, 36-193, (see also page i, or the name of the routine
"btUXXX" )
declarations required, 118
prototypes, 36
RIS/CTS hardware handshaking, 101

S

Scanning for channels that need servicing, 141
Scanning priority, 141
Screen width limit
during input, 121
during output, 172
Screen-pause mode, 81, 99, 133
Second counter, 33
Service rate (for all channels), 128
SHELL.CFG, 31
Shutting down, 89
Simulating a channel’s input, 123, 124

Sockets (LAN)
multiple channels on, 213
numbering, 212

opened by btusdf(), 32
Soft carriage return, 143, 173, (see also Output word wrap)
Software Breakthrough, 1
initialization, 82, 111, 112, 136, 144
routines, 36-193, (see also page i, or the name of the
routine "btuxxx")
shutdown, 89
variables, 21-35, (see also Variables)
Special UART polling method, 177
SPX circuits, 11, 213, (see also LAN access)
SPX connection, 71, 74, 76-77, 157
SPX connections, 31, 215, 215-223
SPX revision, 30
State-machine (LAN), 214
Statistics
report, 135
set, 147
Status codes, 107, 152, 153-166
Super-defining channels, 144

GSBL-238



INDEX

T

Teleconferencing example
HAYES hardware, 196, 197-204
XECOM hardware, 206, 207-211
Terminal (LAN), 223
Terminating SPX session (LAN), 74, 156, 157, 218
Terminating X.25 session, 156
Throttling input and output data, 101
ticker variable, 33
Timeout, 68, 72, 75, 163
Touch-tone
decoding, 64, 69, 161
dialing mode, 74
encoding, 61, 66, 67
Translate table, 40, 48, 67, 90, 138, 183-186
Trigger count (binary input), 167

U

UART category hardware, 7-14, (see also Hardware Category)
UART errors, 135, 147

UART settings, 64, 65, 67

UART, 16550, 10, 92

UART, special polling method, 177

Un-defining channels, 176

Vv

Variables, 21-35

btudtr, 22

btuhrt, 23

btulan, 24

bturno, 25

btusrs, 26

btuver, 27

btux25, 28

ictact, 29

lanrev, 30

lansca, 31

lansop, 32

ticker, 33

%25ign, 34

x25udt, 35
Version code (software revision), 27
Virtual circuits, 11
virtual circuits (X.25), 79
Voice, 72
Voice sensing, 163

GSBL-239



THE GALACTICOMM SOFTWARE BREAKTHROUGH LIBRARY

w

Wait for dial tone, 75
Windows, 98, 111
Word wrapping
GTC, 160
HWord wrap
input, 121
output, 94, 143
Hord-wrap
output, 172

X

X.25 access, 12-14
answering a call, 68
availability, 28
btusen() polling, 141
commands, 63
defining channel groups, 144-146
echo modes, 86
outdial, 78-79
programming, 226-227
receiver, 34, 35
resetting, 139
statistics, 135, 147
status codes, 156, 161, 162, 164
terminating session, 156
virtual circuits, 79

X.25 Software Option, 7, 12-14

X.29 PAD programming, 86, 96, 156, 179

X.3 PAD parameters, 86, 96, 180

x25ign variable, 34

x25udt variable, 35

XECOM category hardware, 8-14, (see also Hardware Category)

XMODEM, 17, 19, 64, 91, 131, 168

XON/XOFF, 192, (see also btuxnf())

Y

YMODEM, 43

GSBL-240



