Developer’s Guide
for The Major BBS®

Version 6.2
January 1994

WGALACTICOMM

Galacticomm, Inc. = 4101 SW 47th Avenue ¢ Suite 101 « Fort Lauderdale, FL « 33314
Voice: (305) 583-5990 « U.S. Sales: (800) 328-1128 « Fax: (305) 583-7846
BBS: (305) 583-7808 * Technical Support: (305) 321-2404

Copyright (C) 1989-1994 by Galacticomm, Inc.

All rights reserved. No portion of this document or the
accompanying software may be reproduced or stored in any medium
without prior written authorization from Galacticomm, Inc., except
by a reviewer who wishes to quote brief passages in connection
with a review for a newspaper or magazine.

Information in this document is subject to change without notice.
This document and any related software are sold "as is".
Galacticomm, Inc. makes no representations or warranties with
respect to the contents of this document, or to the software
described, and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Liability
for the information in this document, and for the software
described herein, shall be limited to the purchase price of the
document or software.

This document discusses computer software and other copyrighted
materials that may be restricted by license agreements or other
protections. This document shall not be used as a written
exception to any license agreement, and shall not be construed by
any party as a license, authorization, or waiver of rights by any
owner or copyright holder of the software discussed.

The Major BBS is a registered trademark of Galacticomm, Inc.
Galacticomm, the Galacticomm logo, Advanced LAN Option, BBSDRAW,
CNF, Entertainment Collection, GalactiBoard, GalactiBox, Locks and
Keys, Major Gateway/Internet, Menu Tree, The Major Database, User
Six-Pack, and X.25 Software Option are trademarks of Galacticomm,
Inc. RIPscrip, RIPaint, and RIPterm are trademarks of

TeleGrafix Communications, Inc. All other products are trademarks
or registered trademarks of their respective companies.

DEV-ii

CONTENTS

1. OVERVIEH «.owossnenens s eressa s etseten sttt ettt naannanan 1
Requirements « +« « « & « + o . . Em e w5 s . . 1
Registering Names w1th Galact1comm 2

Choosing a Developer-ID . . . « « « & « « & 5w 3
Installation B T B 8 B BN U % § 8 . 4
Installation Software for your own Add—on Optlon 8
.RLN Release Notes i 53R P F mEEE EE S 8
How .MSG files are Updated « . « « « . $is i 8

2. DEVELOPMENT ENVIRONMENT e RO e S S T R R W AT searesss 11
Directory and File Structure gow v w5 ou w13
CScurce Conventions 5 w & & = ¥ % @ W@ & ¥ € & % o ®is & § 5 % . 16
Rebuilding MAJORBBS.EXE and standard DLL flles T EREEER Y
Creating a New .DLL . . . + & &« « & =« &« o & « & . 5 19
Rebuilding Your .DLL File g 3 g .21
Versions T . . 21

3. OPERATING ENVIRONMENT ..ccvovveesssnscnnnssnancsanansnnse e s wee A3
Module Definition Files (.MDF) i s oF 5 o= % % o 23
Initialization Routine (init_xxx()) T EEREREEE Y 29
MOAULIES . & & o 4 o s o s = s 8 ® o s o0 s o s s e T 3 5 o1 29
Channel Numbering and Grouplng . e e e e s . . . 39
Data Structures and Memory Allocatlon o oW e ow o» - 0
Volatile Data Area . . . s o e ® % . . 46
Rays to Split up a Long Task T R T I T e . 48
File Handles (fopen()) T rEEREE . T EEREEREEL . 50
Exception Handling (catastro()) S R E o e RN « 5k
Languages . . . + « + o = . e E P EE R RME B & 53
Creating CNF Options « « « « &« & & « « & . 2 : « 55
Compiling CNF Options . . « . « « & « & & « & & & . . . 64
Using CNF Options . . . « « « « & & » .« . . 65

4. USER INTERFACE S e e e A SNER S EEE o Ve SRR B 69
User Output (prf(), prfmsg())« . . . 335 NS . 69

Multilingual User Qutput v+ 10
Defining Text Variables 13
User Imput . . . « + « « . B R S . e ooo. 14
Profanity o « s v & 5 @ % @ 8 v v o s " e whs vy e I
Echo & 6 5 3 8§ % & & % EEEERER YL . W e o « 75
Command Concatenatlon P d M VW R ¥ E R MW A - 18
User-ID Cross Referencing & % 79
Default Selection Character . . - . 80
User Status and Handling « « « « .« . . . ; . 81
Hanging up on a User S . 83
Intercepting User-Connect « . « . . « . . Bd
Autosensor Routines v & » 86

DEV-iii

5 USER: SERVICES wwnu vwawsmsns sevwsesin 5 ST S S e A e s e 90

Security (Locks & Keys) . . « + ¢ v v v o v o o . < 1]

Registerable Pseudo-Keys « ¢ & ¢ & v v v o v o . . 92
Accounting (credits) . . . + & & 4 4 4 4 e 4 4 e 4 e e e e e93
Global Comiands .« w o ww o« x & 3 % woo @ ¥ ¥ % 4 momawon ¥ 5 s 96

Full Screen Editor ¢ Ao FA B 8 F ¥ 8 R IEE & 8 99

Full Screen Data Entry = « « « « « . EEEERE IR 103
File Transfer 5@ & ¥R 8 BMBEEE ¥ s § R v .5 8 5 w17
Uploads G % 5 5 3 S B F B F Bemaw = o el

ASCII Downloads . . « -« & & 4+ & 4 4 v v o & o o o & .o o.o. G120

Downloads . . . s 25 I

File Transfer Protocol wien K B M W W AT B R « & e ow @ % wdioB

6. OPERATOR INTERFACEeveveennnn GRS ERRER SV e s e 137
Video Output (printf()) I S «137
Keyboard Input (getchc()) e e e e e e e e o woom v oAAd
Cursor S momi s mm momom ® T 1

7. OPERATOR SERVICES . .cueseasen B R R R H S R SRS SR 146
BEabisgtics o w ¢ 5 3 o o W B O¥ % 5 W5 Sl e % § %3 OEwE . =106
Audit Trail . . T EEREETE L NN R . .148
Channel Status Reportlnq S S F 8 E S B s v s s w e .148

8. DATABASES &t uvsteeusnsnannsnnnenennsennsnnnsasnseeneensnsnsnsnsnens ...149
Database Functions (MxxBEV()) « « & & & = % @ mw e ¢ ¢ 2 & % @ o149
System Variables Database oI ¥ ¥ % G @ % e s LOY

User Account Database . . o w o & & & & 4 % o 0 o 5 = @ i w @ D8
User Class DatabaSe . & & o s & & o = » 5 2 o o o & s 5 & e B 6 0D
Generic User Database S 3 REE e B R o6 om wmnoam e s lO

9. OFFLINE UTILITIES i siso s vs e riomenmmns oo nsnsns semsssnas s e s sessn s 162
Window output (explode()) . . o om oW W BB W LW ¥ % § W %0 wbOE
Window input (edtval(), choose()) § ¥ B OF oG B @A W ¢ ¥ 3 % @ @ wlbl
Large Model Programming R B s o8 & W wlbB
Language Editor DLLs . . . G E % B E 8 R RS EE S B omwm miDd

.MSG File Reading and ertlng e e e e e e e e e e e e i

10. MORE ROUTINES AND VARIABLES . .iuievueennonennennnanennsnannss PP REAT: 7
Character and String Routines TEEREES L

Real-Time Routines (rtkick(), rtzhdlr(}, 1nterrupts) R EREEREE
Time and Date Routines T EEEREET 505 5 5 5 5 & wliB
Numeric Routines « v v v « o . : B X R om e m ekl
Text File Scanning + ¢ v v v v v v v « «180
DiSK I/0 o & o o oo s o o o 0 w0 m oo v w = 5 » w0 & o = = » = = =181
Everything Else ¢ ¢ v v v v v v v v v v o .. 184

13, REGIABEEITY e somsctveniss v s ee e e v s S o i sieaers ey sy $5 5 185
Some Philosophy on Debugging Bl 5 s om om DD
Programming Tips for The Major BBS D - 121

General Protection Faults « « +v « + & « & « & « « « « . . .186

1. OVERVIEW

This guide could be useful to you in two ways:
Developing Programming an Add-on Option for The Major BBES

Customizing Custom tailoring the functionality of one
specific BBS

The main purpose of this manual is to help developers create new products
for The Major BBS. But it will also be helpful if you’re running a BBS and
you want to customize it by making changes or additions to the source code
or other aspects.

This guide is written assuming:

o You have purchased The Major BBS and the Developer’s C Source Kit.

o You have read the System Operations Manual for The Major BBS.

o You are proficient in using The Major BBS (via modem or other
interface).

o You are proficient in operating The Major BBS (from the console).

o You are proficient in the C language (we recommend "The C
Programming Language," by Kernighan & Ritchie).

0 You are proficient at using DOS on the IBM PC and compatibles.

Knowing assembly language can be helpful too, but it's by no means required
to make extensive use of this development environment.

Requirements
To set up your development environment for developing your own Add-on
Options for The Major BBS, you will need:

o 80386, 486, or Pentium IBM style computer with at least
4 Megabytes memory (1 Mb real, 3 Mb extended)

o 60 Megabytes hard disk minimum, but you may want 100 Megabytes
or more

o DOs version 3.3 or higher

o Borland C++ compiler version 3.1 (see page 21 for a
discussion of versions)

Developer’s Guide DEV-1

o Phar Lap 286 |DOS-Extender SDK V3.0 or higher
o The Major BBS version 6.2 or higher

o The Developer’s C Source Kit for The Major BBS, which includes:
- C source code for The Major BBS
- supporting subroutine libraries
- supporting batch, make, and other files

o The Extended C Source Suite for The Major BBS (opticnal), which
includes:
- C source code for the GCOMM.LIB subroutine library
- C source code for numerous offline utilities and supporting
programs

o A text file editor of your choice, such as:
- KEedit, by the Mansfield Software Group
- QEdit, by SemWare in Marietta, GA
- Personal Editor, by Personally Developed Software
~ EDIT (comes with DOS 5.0 or later)
- EDLIN (comes with all versions of DOS)

o Btrieve from Novell (optional; required if you need to create
your own databases)

Except for the computer, Btrieve, and the text editor of your choice, all of
these products are available from Galacticomm.

To develop Flash games for The Major BBS, contact Galacticomm. This does
not require source code licenses.

Registering Names with Galacticomm

To avoid conflicts between the names used in Add-on Options for The Major
BBS from various third party developers, Galacticomm will register the names
used in your finished products. This starts with your Developer-ID (more
below). Besides Developer-IDs, here are a few of the kinds of things that
could run into naming conflicts:

Module names (from .MDF files, see page 23)
Text variable names (see page 73)

New CNF levels (see page 55)

Statistics screen names (see page 146)

coQo0

Call Galacticomm at (305) 583-5990 and ask for Third-Party Developer
Services to register your Developer-ID and other names you are using.

DEV-2 Galacticomm

Choosing a Developer-1D

Galacticomm maintains a master list of 3-character Developer-ID’s.

All files that you supply on your product diskette (including
compressed files and the files inside of compressed files) and
that are created during the execution of the BBS should have names
that start with your three-letter Developer-ID.

See the exceptions for INSTALL.EXE and DISK1.DID, etc., below.

All files associated with running an Add-on Option for The Major BBS should
strictly adhere to this convention to aveid file name collisions.

Source and object file names should ideally also use the Developer-ID prefix
to avoid name collision. Even if you use a separate directory for your
source files, your object files will reside in the same directory as all
other cbject files from all other developers (\BBSV6\PHOBJ or \BBSV6\LOBJ).

You may choose not to use your Developer-ID prefix on source files. The
need for unique source and object file names is not as strict as the need
for unique names of files associated with running the BBS and Add-on
Options. It would be a disaster for a BBS operator to buy two Add-on
Options from different sources and have them not work because of a file name
collision. It would be an annoyance for somecne who buys your source code
to run into name collisions. The latter is going to happen to a far smaller
group of people, and those people (BBS developers or BBS customizers) are
more likely to be able to recover from it themselves by manually renaming
some of the files.

These Developer-1D's are reserved by Galacticomm:

BBS Global or internal purposes
GAL Standard and Add-on Options from Galacticomm

CNF LOC MTH \
MAJ EMU MDF \ other reserved prefixes
MJR CAT /
BTR GP /
INS Reserved for INSTALL.EXE or INSTALL.BAT on the floppy disks
that we ship, or that you ship
DIS Reserved for DISKn.DID files on floppy disks
GHO Reserved for Galacticomm Host program for Doors
In this manual we’ll use "DDD" to represent an example of a Developer-ID:
DDD example Developer-ID

For Sysops, or anyone developing something to run on one BBS only, the
following Developer-ID is available:

Z2Z Sysop Developer-ID

Developer’s Guide DEV-3

Installation

The following procedure has been designed to apply to everyone who purchases
C source code from Galacticomm. It was designed for non-programmers, but it
assumes you already have a way to edit text files like .BAT batch files.

There are several products discussed here, and several sections may or may
not apply to you. Whether you’'re building a development environment for the
basic BBS, or for a BBS with dozens of Add-on Options, including some of
your own, please use this as your central reference, and follow the steps
very carefully.

To create a development environment for The Major BBS on your computer:

1. 1Install The Major BBS. Put the first disk in your A:
floppy drive and type:

A:INSTALL

We strongly recommend you use the default directory "\BBSV6"
for your development environment. (If you use a different
directory, you’ll have to edit all the .BAT, .LNK, .MAK, .DEF,
and .CFG files. See page 13.) The \BBSV6 directory will be
created automatically for you if it does not already exist.

You can install from a different floppy drive by typing:
B:INSTALL

or Q:INSTALL, or whatever. This will be true for installing

software from any disks from Galacticomm, even though we’ll

just talk about A: in the rest of these steps.

Before you install the source code and other items, it might

be a good idea to try running The Major BBS and getting it on

the air. See the System Operations Manual for details.

2, 1Install the Borland C++ Compiler. Put the INSTALL DISK in
your A: floppy drive and type:

A:INSTALL

We recommend that you use the default directory "\BORLANDC".
This directory will be created automatically for you if it
does not exist already.

After installing the compiler, create a TLINK.CFG file and a
TURBOC.CFG file in your \BORLANDC\BIN directory (or replace them
if they're there already) with these contents:

TLINK.CFG
~L\BORLANDC\LIEB; \RUN286\BC3\LIB; \BBSV6\DLIBE

TURBOC.CFG

- I\BORLANDC\INCLUDE ; \RUN286\INC ; \BBSV6\SRC
-L\BORLANDC\LIB; \RUN286\BC3\LIB; \BBSV6\DLIB

DEV-4 Galacticomm

3. Install the Phar Lap 286|DOS-Extender SDK. Put the Software
Development Kit disk 1 in the A: floppy drive and type:

A:INSTALL
Use the default "\RUN286" directory (it will be created for
you, as well as its subdirectories). When it comes time to
choose what to install, pick these:

286|DOS Extender Binaries YES

MS C Support NO
MS Fortran Support NO
Borland C++ Support YES
MS C Examples NO
Borland C++ Examples NO

4. Put the compiler and DOS-Extender BIN subdirectories and the
\BBSV6\SRC directory in your path statement. For example,
you could have something like this in your AUTOEXEC.BAT file:

AUTOEXEC.BAT

PATH:C:\DOS;C:\BORLANDC\BIN;C:\RUNZSG\BIN;C:\BBSVG\SRC

(If you make changes to AUTOEXEC.BAT, remember to reboot your
computer so they take effect.)

5. Install Borland C Huge Model Support. Download the huge
model support files from Phar Lap’s BBS at (617) 661-1009.
Lock in the File Library in the "GALACT" LIB and download the
file named "PLPAT2.ZIP".

Unzip the files in this ZIP file and run the MKLIB batch file:
CD \RUN286\BC3\LIB
(download or copy PLPATZ2.ZIP into this directory)

\BBSV6\PKUNZIP PLPAT2.ZIP
MKLIB H \BORLANDC\LIB

If MKLIB gives you a "file not found" message, it’'s OK.

6. Install The Major BBS Developer’s C Source Kit. Put the
first disk in your A: floppy drive and type:

A:INSTALL
If you have the Extended C Source Suite, do steps 7 and 8:

7. 1Install The Major BBS Extended C Source Suite. Put the
first disk in your A: floppy drive and type:

A:INSTALL

Developer’s Guide DEV-5

8. For every new \BBSV6\SRC*.MAK file that comes with the
Extended C Source Suite, insert the following lines at the end
of the master make file \BBSV6\SRC\MAKEBBS.BAT:

cd \bbsvé\src
make -fbbsxyz.mak

(Instead of "bbsxyz.mak" use the name of each .MAK file that
comes with the Extended C Source Suite.)

This step isn’t critical, but you may find it handy to be able
to run MAKEBBS to reliably compile and link whatever needs
compiling and linking.

And if you purchase Btrieve from Novell (for your own databases), do step 9:

9. Install the Btrieve database development package from
Novell.

If you have purchased the C source code for any Add-on Options from
Galacticomm, do steps 10-12:

10. 1Install the Add-on Options. Put the first disk in your A:
floppy drive and type:

A:INSTALL

11. Install the Add-on Option C Source code. Put the first disk
in your A: floppy drive and type:

A:INSTALL

12, Add the appropriate lines to the end of \BBSV6\SRC\MAKEBBS.BAT
to invoke the .MAK file for the option, such as:

cd \bbsvb\src
make -fgalxyz.mak

(Instead of "galxyz.mak" use the name of whatever .MAK file
comes with the C source code of the Add-on Optiocn.)

This step will allow you to use MAKEBBS to properly follow up
on any and all changes you may make to the source files or
other files in the Add-on Options.
To develop your own Add-on Option, you can either use our \BBSV6\SRC
directory for your source and support files, or you can make your own
subdirectory.
Chocse one of these (either 13a or 13b):

13a. Put your C source code in \BBSV6\SRC.

Add lines onto the end of \BBSV6\SRC\MAKEBBS.BAT that invoke
your make files, such as:

cd \bbsvé\src
make -fdddxyz.mak

(Instead of "dddxyz.mak" use the name of your .MAK file.)

DEV-6 Galacticomm

or:

13b.

Create a subdirectory for your source code with the same name
as your Developer-ID. For example, if your Developer-ID is
"DDD", create:

\BBSV6\DDD C source code for your Add-on Option

You can also add lines onto the end of \BBSV6\SRC\MAKEBBS.BAT
that invoke your make files, such as:

cd \bbsvé\ddd
make -fdddxyz.mak

(Instead of "dddxyz.mak" use the name of your .MAK file.)

Whichever method you choose: \BBSV6\SRC or \BBSV6\DDD for your source code,
try to use unique names for your source files. Either way, all object files
end up in \BBSVA\PHOBJ: yours, and those of other developers. To minimize
the probability of name collisions, it's a good idea to use your
Developer-ID as a prefix to all your source file names.

Now, test your development environment:

14.

15.

Run \BBSV6\SRC\MAKEBBS.BAT:

CD \BBSV6\SRC
MAKEBBS

This will compile and link \BBSV6\MAJORBBS.EXE, plus almost all
\BBSV6*.DLL files, and some \BBSV6*.EXE offline utilities.
The process may take many minutes depending on your computer’s
processing power. Keep a sharp eye out for warnings or error
messages.

Bring up the BBS and exercise it (try a file transfer over
the modem, or over the LAN, for example).

Congratulations! Your development environment for The Major BBS is up and

running!

Developer’s Guide DEV-7

Installation Software for your own Add-on Option

The INSTALL.EXE program we use has some general purpose capabilities that
make it useful for just about any Add-on Option for The Major BBS. As with
all Galacticomm code, you can only use INSTALL.EXE in your product under
special license arrangement with Galacticomm. Assuming you have reached
such an arrangement, here are the technical details.

All files must be combined into .ZIP compressed files on your release floppy
diskette(s), with only a few exceptions that we’ll discuss here. For one, put
on your first diskette a file called DISK1.DID, for example:

DISK1.DID
2 150 7000000

Here is what these three numbers represent:
2 - total number of diskettes for this Add-on Option

150 - total number of all files inside of the .ZIP files on
all diskettes (inner .ZIP files are not unzipped)

7000000 - approximate total hard disk space that will be required to
complete installation

Other disks must contain files named DISK2.DID, DISK3.DID, etc., but the
contents of these files don’t matter. If your .ZIP files require a certain
version of PKUNZIP, then put PKUNZIP.EXE on the last disk in your set
(outside of any .ZIP files of course).

To run your own batch file or pregram after INSTALL.EXE completes, be sure
to include at least one .MDF file with an "Install:" directive (see
page 24 for details) somewhere in one of your .ZIP files.

Note: The BBS automatically deletes whatever file is named in an
MDF "Install:" directive after it’s done running.

.RLN Release Notes

You can include release notes in an .RLN file in one of your .ZIP files.
INSTALL will automatically display them to the operator. We use this to
display BBSMAIN.RLN to Sysops when they first install the BBS. That file
contains very up-to-date information and it makes sure the Sysop gets a chance
to read it. Note: be sure your lines are no more than 76 characters long.

How .MSG files are Updated

Any .MSG files included in your .ZIP files are automatically merged with
.MSG files that exist already on the Sysop's system. This way their offline
CNF option settings are preserved when they update to a new version of your
software.

See page 55 about creating .MSG files. Here's an example of how it works:
Suppose you supply a DDDSAT.MSG file with an option named HOOPLA{}. If a
DDDSAT.MSG file with a HOOPLA{} option already exists on the Sysop’s BBS,
then the contents of that option (what’s between the curly braces) in the
Sysop’s old DDDSAT.MSG displace those from your release disks. 1In all other

DEV-8 Galacticomm

respects (option type, description, help message), the contents of your
DDDSAT.MSG file are updated on the Sysop’s system.

An alternate form of the .DID files on each of your release diskettes adds
a language name at the end. For example:

DISK1.DID
2 150 7000000 English/RIP

This is used in certain special situations. When a language name appears as
the fourth parameter in a .DID file, it tells the INSTALL program to be sure
to force all text in that language onto the BBS, and not to mix it with any
text the Sysop may already have in that language.

This is especially helpful, for example, with English/RIP text block design
and updating. There are many cases where the function of one English/RIP
text block depends on the contents of another text block, and a system with
a mix of old and new English/RIP versions of text blocks won’t work very
well.

You can use this feature with any user-language, such as "Spanish/RIP" or
"German/RIP". If you use this feature in your Add-on Option, the Sysop will
be given the option (called "UPDATE NEW") of mixing his text in the
specified user-language with yours, but he’ll be strongly encouraged to
allow all of your text to take precedence (that option being called "UPDATE
ALL").

Developer’s Guide DEV-9

TEXT
EDITOR /——

| ="l
BR || ; MSG ‘ J I | H ‘
Database CNF options ‘ ‘ Source code JJ [Header J
v I

| specifications LI files

| \{
BTHIEVE\,
|]. (BUTIL ‘ w BBSMSX —l-— CNngtmn COMPILEH}
A\ CR : \ headerflles LNK
Linker response

\ -CREATE)
7 //
files
_l:“
VIR H UBJ
Empty L_ Object
| databases files |
|
| =
. \ LIB o |
i Subroutine [+—=| UNKER "* DLLdeflnmon
J | libraries] files
|
‘ '\
| _ \,,
‘ | MAJORBBS.EXE \
i | Executable \
| I BBS kernel] \
| ’_ |
: = 7 :
| wovy || [
CNF options Dynamic Link ||
| (runtime forn form) [Libraries |~

: "
|
1
MDF
Module
| Definition Files

\"7’ THE
r—DAT ! ,_,,/r!

™ Databases
e A
% ,‘\ \ Serial Ports

- = b e

' : / \
/THE N BIN /

| praw ™ Screen J— /

\\\7 ’/ _| mages ,‘-’; ‘

PG XNet J X.25 Packet
L—\OCH‘ e Switching
rea o Network
M

Netwi

Development and Runtime Structure of The Major BBS
DEV-10 Galacticomn

2. DEVELOPMENT ENVIRONMENT

The Runtime Environment

The Major BBS runs with a large
supporting cast of disk files.
MAJORBBS.EXE is the kernel of the
BBS with multi-user support, user
and console interfaces, security,
accounting, menuing, and online
services like file transfer and
message editing, as well as
numerous utility subroutines.
.DLL (Dynamic Link Library) files
contain software for various
online services like Electronic
Mail and Forums (together in
GALMSG.DLL), Teleconferencing,
File Library.

.MDF files are Module Definition
Files. These are the starting
points for all operations of the
BBS, specifying: what user
services are available when Sysops
design their Menu Trees; what text
files to use for the BBSUSER.DOC
online user manual; what
databases, CNF options, text
blocks, and utilities to use; and
what happens at installation, at
the nightly auto-cleanup, or at
other timed events.

.DAT Databases maintain

information on users, messages,
online files and more.
options.

vl

hrea o
=D Aot

The Major BBS-Runtime Environment

.MCV files store prompts, menus, and configuration
.BIN files store screen image backgrounds or statistical graphs.

You can edit .BIN files with a shareware program like TheDraw.

Developer’s Guide

DEV-11

The Development Environment

Behind the scenes of the files
that support running The Major

BBS are a host of files on the
development system. Almost every-
thing starts with a text editor
and a text file. Various programs
(shown as circles) process text
files and turn them into other
things. At the heart of the
matter, C source code in the .C
and .H files gets compiled into
object files. The object files
get linked with each other and
with subroutine libraries to form
executable code: either in the
MAJCRBBS.EXE kernel, or the

.DLL files.

Also behind the scenes, .MSG files
encode CNF options and text
blocks. These are referenced in
the source code using codes
defined in .H files, and used
online by reading from the indexed
.MCV files. BBSMSX converts .MSG
files into .MCV files.

If you’re creating your own
databases, you can use Btrieve
from Novell to generate empty .VIR
database files from the .BCR
specifications. The install

a{;ﬂm\ 7 : _I" I
Ll BESHSX
SCAFATE EB’:;EW::Q ’l COMPILER

e
The Major BBS-Development Environment

process first copies .VIR files to .DAT files to start off the databases (it
knows to do this if the .DAT file doesn't exist yet).

See page 162 for the development environment for offline utilities.

DEV-12

Galacticomm

irectory and File Structure

Directory Structure for The Major BBS Developwent Environment

\PHOBJ
\LOBJ
\DLIB
\LIBSRC

TI7]

\BORLAND \BIN
NINCLUDE

\LIB

Wﬁ

Runtime directory For The Hajor BBS

Subdirectories for other Forums and LIBs

\BBSVb—
\HELLO /Hello Forum message attachments
\EMAIL Email attachments
\MAIN Files in the MAIN LIB
\SRC

¢ source files (,C ,H), Linker response files (.LNK)
Object files for Phar Lap Huge model (.O0BJ)

Object files for Large wodel (.0BJ)

Libraries (.LIB) and DLL definition files (.DEF)

C source files for PHGCOMM.LIB (extended source pkg)

Compiler, linker, librarian, wake, assembler (,EXE)
Include files (.H)
Libraries (.LIB)

\RUN28 \BIN Phar Lap 286 Loader programs
\BC3\LIB Libraries for Borland C++ version 3
\SRC Source code

\INC Include files

We recommend the directory name
"\BBSV6" for running The Major
BBS, but this is your option. You
can easily run The Major BBS from
any directory on any drive.
However, when developing for The
Major BBS, it’s much more work to
use a directory structure other
than one that’s based on \BBSV6.
(If there are very good reasons
why you don’t want to use

\BBSV6, you’ll need to use a text
editor to modify all batch files,
link files, make files, and
compiler configuration files
(.BAT, .LNK, .MAK, .DEF, .CFG).
Also, before you even install
these files from the source
diskette, you’ll need to modify
the INSTALL.BAT file on the source
diskette to refer to the directory
you're using that’s other than
"\BBSV6".)

The Runtime Directory

Almost all of the files that The
Major BBS needs to run will be
located in the \BBSV6
subdirectory. This includes the

MAJORBES EXE
Expruiatie

BAS bormel

Developer’s Guide

DEV-13

main executable file
(MAJORBBS.EXE), all dynamic link
libraries (*.DLL), all databases
(*.DAT), and all CNF options
(*.MCV) plus many more. See

page 3 for conventions on file
naming with Developer-ID’s. See
page 15 for the conventions on
file extensions. When you run The
Major BBS, don’t execute
MAJORBBS.EXE directly, use BBS.BAT
instead.

The Development Directories

For The Major BBS and all Add-on
Options from Galacticomm, the sub-
directory \BBSV6\SRC will hold the
source files and \BBSV6\PHOBJ will
hold the object files. For all
online source code, the compiler
huge model will be used, along
with Phar Lap 286 |DOS-Extender
enhancements. Subroutine
libraries are in \BBSV6\DLIB.

S
L

s

See page 162 about developing
offline utilities.

L

Object Directory: \BBSV6\PHOBJ

DEV-14

-
-

DEF
DLL defirtions

Library Directory: \BBSVE\DLIB

Galacticomm

File Extensions

.ALT Alternate sorting sequence for databases

.ANS Text files with ANSI commands

.ASC Text files without ANSI commands

.BAT Batch files

.BCR Btrieve database creation specifications

.BIN Screen image files

e C-language source files

.CFG Compiler and linker configuration files

.DAT Btrieve databases

.DEF Protected mode definition files -- used during linking to
specify exported symbols, etc.

.DID Installation specifications file on floppy disks

.DLL Dynamic Link Libraries (linker output)

.DMD Disabled .MDF file

.DOC Documentation

.EXE Executable files (linker output)

.FLG Special purpose "flag" files

.H C-language header files (some are generated by BBSMSX)

JHLP Helpful text files

.IBM Text file with ANSI commands and Extended ASCII characters

.IDX Internal data file

.INS Instructions

.LNK Linker response files -- specifies all the object files that
the linker needs to create an .EXE or .DLL file

.LOG Capture of local or emulated sessions

.MAK Make files

.MAP Linker report output

MCV CNF options (runtime form)

.MDF BBS module definition file

.MSG CNF options (editable form)

.0BJ Object files (compiler output)

.REF Internal data file

.RLN Release notes

«REPE Reports

.SCN Screen image files

.TXT Text files for online viewing (sample Menu Tree file pages)

.VIR Empty or starting-point databases

LZIP Files compressed and combined with PKZIP

See also page 3 on the use of Developer-ID's as file naming prefixes.
A few unique file names:

MAJORBBS.EXE Main executable program

MJRBBS.CFG Menu Tree generated list of DLLs, languages, MSG’s, and
other BBS requirements
GP.OUT General Protection report file

To avoid conflicts between file names and directory names wherever possible:

File names should have nonblank extensions and directory names
should have blank extensions.

Developer’s Guide DEV-15

C Source Conventions

Here are a few of Galacticomm’s in-house standards on the formatting of C
source files:

o

(o]

DEV-16

all C source files, after the comment header, should begin by
including GCOMM.H:

#include "gcomm.h"

GCOMM.H is a header file that does several things, including:

Includes several of the standard Borland C++
header files for defining constants, data
types, macros, and function prototypes:

stdio.h dos.h setijmp.h
stdlib.h io.h string.h
ctype.h math.h stdarg.h
dir.h mem.h time.h

Includes some special-purpose Galacticomm header
files:

btvstf.h Btrieve database functions

dosface.h DOS time and date, file finding

dskutl.h More DOS time and file functions

tfscan.h Text File Scanning functions

lingo.h Multilingual information

msgrdr.h Reading .MSG files (for offline utilities)

Includes Phar Lap's header file phapi.h

Defines prototypes for the functions in
GCOMM.LIB.

Defines constants for the second parameter of the
fopen() function (see page 50).

Makes sure that the abs(), min(), and max()
macros are defined.

Defines constants for special keystrokes, for
example F1, ALT P, and CTRLHOME (these are
possible return values of getchc(), see

page 144).

pefines other constants, data types¢, and macros.

Galacticomm C Source code uses function prototypes. This
means, among other things,

defining the return value and parameters

using "void" when a function doesn't return anything
using "void" when a function has no parameters
putting a prototype in a corresponding .H file if
other files must use the function

Galacticomm

NOTE: For functions with a variable argument list that
are coded in C, we don't use prototypes for the
argument list, just for the return value:

char *spr();
int tokopt();

With similar functions that are coded in assembly
language, we go ahead and use as much prototyping
as possible:

void prf(char *fmat,...);
void prfmsg(int msg,...);

There are shareware utilities like PROTCE that will help you
generate prototypes for local-use functions in a .C file.

o Routines that are needed only within the .C file where they
reside should be coded STATIC, as in:

STATIC void
localroutine(void)

{
}

doessomething();
o Routines that need to be called from code in other C source
files should be coded like normal:
void
globalroutine(void)
{

}

doessomething();

o Your init xxx() routines (page 29) should be coded as
EXPORT, as in:

void EXPORT
init__ routine(void)

{
}

initsomething();

Rebuilding MAJORBBS.EXE and standard .DLL files

This section is mainly for customizing The Major BBS, not so much for
developing new products for it.

When developing products for The Major BBS, we assume you won't be modifying
any of the code that makes up MAJORBBS.EXE -- the BBS kernel. If you do,
you’re severely limiting your market to BBS operators who have purchased the
Developer’s C Source Kit for their own customization purposes.

When customizing The Major BBS to suit your needs, you may be modifying the
C source files that make up MAJORBBS.EXE or the standard .DLL files.

Developer’s Guide DEV-17

If you do, just run the MAKEBBS.BAT file to recompile and link:

CD \BBSV6\SRC
MAKEBBS

This compiles and links what needs to be recompiled and relinked based on
what files you have changed. The MAKE program, which comes with the Borland
C++ compiler, only looks at the times and dates of the files, not at the
actual changes you made. For example, if you change MAJORBBS.C, that file
will be recompiled and relinked to form MAJORBBS.EXE. That makes sense.
However, if you merely change an itty-bitty comment in GCOMM.H, then every
single file in the standard package will be recompiled and relinked. MAKE
sometimes does a little more work that it has to, but it’s the safest way to
be sure that you’re running with the results of your latest source code
changes.

You can always do the compiling and linking yourself.
To process a <filename>.MSG file into .MCV and .H files:

CD \BBSV6
BBSMSX <filename> -OSRC

To compile a <filename>.C source file that contributes to
MAJORBBS.EXE:

CD \BBSV6\SRC
CTPH <filename>

(It’'s not a good idea to do "CTPH *" because different source
files need to be compiled with different CTXXX.BAT files.)

To compile a <filename>.C source file that contributes to a .DLL
file:

CD \BBSV6\SRC
CIDLL <filename>

It’s very important to compile using the correct batch file (CTPH or CTDLL).
To relink MAJORBBS.EXE:

CD \BBSV6\SRC
LTPH

To relink any <filename>.DLL file:

CD \BBSV6\SRC
LTDLL <filename>

For developers: you’ll be able to use many of these same steps for
compiling and linking your own .DLL file for your own Add-on Option.

DEV-18 Galacticomm

Creating a New .DLL File

Here are most of the administrative aspects of making a .DLL. The technical
and algorithm considerations will be discussed in later sections.

1.

Name your initialization routine starting with "init_ "
(that’s two underscores), such as "init colormod()". See
page 29 for details.

The rest of the code in your C source file(s) will probably
flow indirectly from what you do in your init xxx() routine.
For example, if you register a module, the text line input
entry point will need to be coded (page 29). If you
register a text variable, that routine will probably be in
your C source files too.

Create a .LNK file for your .DLL. You can use the file
\BBSV6\SRC\GALP&Q.LNK as an example:

\run286\bc3\ L ib\cOphdl L +
\bbsvé\phob)\galpéq

\bbsvé\galpiq

nul

phapi galimp msgimp gsblimp /Twd /s /n
\bbsvé\dl ib\node f

This .DLL includes the code for the Polls and Questionnaires
Add-on Cption. Only one .OBJ file from the \BBSV6\FHOBJ
directory is named: GALP&Q.0BJ. This .LNK file specifies the
NODEF.DEF file, the one you’'re most likely to use (the .DEF
extension is implicit)

One example of a condition that would require you to design your
own ,DEF file is if your DLL had routines that other DLLs
needed to call for some reason. In that case: you'd make a
.DEF file for the DLL where the routines were defined; you'd
use Borland’s IMPLIB program to create a .LIB import library
from the .DEF file; and you’d link the .LIB file in with the
DLL where the routines are referenced.

Read about TLINK in the Borland C++ Tools and Utilities Guide
if you want to know more about .LNK files (linker response
files) and .DEF files (module definition files, in Borland’s
terminology). See page 22 for how we use MAJORBBS.DEF to
make GALIMP.LIB.

Your DLL will be able to use routines in MAJORBES.EXE by means
of our import library \BBSV6\DLIB\GALIMP.LIB. Our import
libraries use ordinal references to help with upward
compatibility. Our intention is that your DLL files will
continue to work with future versions of The Major BBS.

If you use any routines from the Borland compiler library that
we don’t use in MAJORBBS.EXE and export in
\BBSV6\DLIB\MAJORBBS.DEF, you will get undefined symbol
errors. We use an awful lot of Borland library routines in
The Major BBS, but naturally we don’t use every single one.
There are a couple of possibilities you may want to consider.
It may be possible to simply include BCH286.LIB in the list of
libraries in your .LNK file, for example:

phapi galimp msgimp gsblimp bch286 /Twd /s /n

Developer’s Guide DEV-19

DEV-20

But this doesn’t always work. Many of the Borland library
routines have interdependencies with other library routines or
internal data structures. For example, if you use a memory
allocation routine, or any kind of file I/O routine, conflicts
could arise with the memory or I/0 routines used in
MAJORBBS.EXE. A truly independent routine will not have this
problem, but the only way to know this for sure is if you have
the compiler library source code.

The safest approach may be to find an alternative to using the
routine. Perhaps you could write your own version of the
routine (giving it a different name to avoid conflicts). Or
redesign the calling routine.

The Major BBS makes no use of floating point numbers. Many of
our Add-on Options don’t either, but a few do. If your DLL uses
floating point math at all, make these changes to your .LNK
file:

A. Add a second line that links in FPDMY.OBJ:

\run286\bc3\ L ib\fpdmy &

B. Add a reference to the MATHH.LIB file just after
that of PHAPI.LIB on the next-to-the-last line:

phapi mathh galimp msgimp gsblimp /Twd /s /n

C. Change the last line to refer to \BBSV6\DLIB\
MATHDEF.DEF instead of \BBSV6\DLIB\NODEF.DEF.
Compare the contents of those two files to see
what the critical differences are.

Your software uses floating point math if: you use "%f" in any
control string (for sprintf(), spr(), remember that prf(),
prfmsg() and printf() don’t support "%f"); if you declare any
floating point variables or constants; or if you use any
floating point math operators or functions.

Make a .MAK make file with instructions for compiling and
linking your .DLL file (and .MSG file indexing with BBSMSX, as
required). Basically, you're telling MAKE about all the
dependencies between files. See the .MAK files that we use
(\BBSV6\SRC*.MAK) as a starting point, and see Borland's
documentation on the MAKE utility.

You may want to add your .MAK file to the end of
\BBSV6\SRC\MAKEBBS.BAT for convenient, centralized
recompiling:

cd \bbsv6\src or cd \bbsvée\ddd
make -fdddxyz.mak make -fdddxyz.mak

where "dddxyz.mak" represents the name of your make file.
(See step 13 on page 6 about whether to use \BBSV6\SRC or
\BBSV6\DDD for your source directory.)

To try out your individual make file, just type the following,
where <program name>.MAK is the name of your MAKE file:

MKU <{program name>
Galacticomm

8. Name the .DLL file in the "DLLs:" line of your .MDF file (more
later on page 23).

Rebuilding Your .DLL File

1f you have made your own <program name>.MAK file, you can run that
whenever you need to incorporate changes to your source code.

MKU <program name>

1f you’ve called out your .MAK file in MAKEBBS.BAT, then run that.
MAKEBBS

On the other hand, here’s how to do it a piece at a time:
To process a <filename>.MSG file into .MCV and .H files:

CD \BBSV6
BBSMSX <filename> -OSRC

To compile a <filename>.C source file that contributes to your

.DLL file:
CD \BBSV6\SRC or CD \BBSV6\DDD (as appropriate)
CTDLL <filename> CTDLL <filename>

(It's not a good idea to do "CTDLL *" because different source
files need to be compiled with different CTXXX.BAT files.)

To relink your <filename>.DLL file:

CD \BBSV6\SRC or CD \BBSV6\DDD (as appropriate)
LTDLL <filename> LTDLL <filename>

Versions

The development environment for The Major BBS depends on a number of
software products, most importantly:

o Borland C++ Compiler
o Phar Lap 286|DOS-Extender SDK

These products are available from many sources, including Galacticomm.

These software packages are updated regularly (once or twice a year) and
this causes a number of problems for Galacticomm, developers, and
customizers of The Major BBS. We try to keep up with the latest versions,
but what’s available in the stores and mail-order houses, and what's
compatible with what, isn’'t always within our control.

1f you purchase these products on your own, you need to make sure that the
versions are compatible with each other and with Galacticomm source code.
When possible, call us and verify version compatibility before you buy
these products. We also stock them to give you a minimum-hassle
alternative.

Developer’s Guide DEV-21

Updating Software

When updating software from Galacticomm or other parties, be sure that your
new combination of software is a compatible set.

Updating software from Galacticomm

1. Make a back-up copy of your entire hard disk.

2. If you’ve changed source code that the new update overrides,
save your code somewhere handy.

3. Insert the first floppy diskette into your A: drive.
4, Type "A:INSTALL". (You can use B: and B:INSTALL if you need
to.)

5. Resolve changes in your source code with changes that the
update provides, possibly by "merging" the two together. The
"MATCH" utility might aid in this effort. 1It's available in
the UTILITY Library on the Galacticomm Demo System, at (305)
573-7808.

6. Run \BBSV6\SRC\MAKEBBS.BAT to recompile everything.

Updating your compiler or the Phar Lap DOS-Extender

1. Make a back-up copy of your entire hard disk.

2. Remove your compiler from your hard drive completely.

3. Remove Phar Lap from your hard drive completely.

4. Install the compiler, and Phar Lap, from scratch,

following steps 2-4 on page 4.

Delete \BBSV6\MAJORBBS.EXE and all \BBSV6*.DLL files that

you can recreate (probably all .DLL files except

GALGSBL.DLL and BBSBTU.DLL).

6. Delete all object files in \BBSV6\PHOBJ*.OBJ and
\BBSVE6\LOBJ*.0BJ.

7. Run \BBSV6\SRC\MAKEBBS.BAT to recompile everything.

(#2]

How we use MAJORBBS.DEF to make GALIMP.LIB

MAJORBBS.DEF contains a long list of symbols for variables and functions
defined in MAJORBBS.EXE. It gets used in two ways to bridge the gap between
the code in the DLLs and the code in MAJORBBS.EXE. (1) MAJORBBS.DEF is used
when creating MAJORBBS.EXE to identify those symbols as "exported" so they
are available to DLLs. (2) It's also used to make GALIMP.LIB, the import
library that’s linked with all DLL code, so that code can use those symbols.

To use MAJORBBS.DEF to create GALIMP.LIB, the following line must first be
added to the beginning of MAJORBBS.DEF:

LIBRARY MAJORBBS
Then we use Borland’s IMPLIB to create GALIMP.LIB
IMPLIB GALIMP.LIB MAJORBBS.DEF

Then we remove the LIBRARY command from MAJORBBS.DEF, restoring it to the
form that's useful when linking MAJORBBS.EXE (via LTBBS.LNK)

DEV-22 Galacticomm

Module Definition Files (.MDF)

Module Definition Files are key to how The Major BBS recognizes many aspects
of your Add-on Option:

o What .DLL files to load, and what module(s) the Sysop can use
in Menu Tree module pages

What .MSG files to include, providing CNF options

Module dependency on other modules

Module replacement of other modules

special installation processing

Online users manual, to integrate into BBSUSER.DOC

Btrieve database requirements

Special processing at auto-cleanup, or at timed events

add-on utility (option 8 from the introductory menu)

Language information

Custom editors for CNF text blocks and Menu Tree custom menus

O0Q0O0OCO0OO0O00O0O0

Here is the .MDF file for the Registry of Users:

; GALREG.MDF
Module Name: Registry of Users
Developer: Galacticomm

Requires:
Replaces:

Install:
Online user manual: GALREG.DOC

DLLs: GALREG
MSGs: GALREGIS

Btrieve page size: 1024
Btrieve files: 1

Cleanup:
Event-1:
Event-2:
Event-3:
Event-4:

Add-On Utility:

Developer’s Guide DEV-23

Here are some details about what to put in your .MDF file.

Comment Header
This is the name of the .MDF file.

Module Name

This description of the module appears when designing module pages
in the Menu Tree. It will also appear on the miscellaneous
statistics screen. (Use gmdnam() to read in this description --
see page 30.) The name may be up to 24 bytes long.

Developer
Your name Or company name.

Requires

If your module will require that any other modules be "active",
name them here. You might use this if that module exports symbols
that you use. When several modules all require each other, use a
circular definition. (For example GALFOR.MDF requires GALTLC.MDF
which in turn requires GALEML.MDF which itself requires GALFOR.MDF
again.) You can list up to five .MDF files.

Replaces
If you have a module that replaces another, name the other module

here. For example, Galacticomm’s Entertainment Collectiocn has an
Entertainment Teleconference that replaces the teleconference that
comes with the standard version of The Major BBS. (Note: the
"replaces" and "requires" logic work well together, such that if
module A requires module B, and module C replaces module B,

then module A's requirement is satisfied by module C being
present.)

NOTE: be sure not to "replace" a module that has exported
symbols, even if your module exports the same symbols.

Install

If any special installation procedures are required, call out the
.EXE, .COM or .BAT file here (just the root of the file name, not
the extension, like you’'d type in a DOS command). This file will
be run only when the module is first installed on a Sysop's
computer, and then automatically deleted.

The presence of this file acts as a "flag" to find out whether
installation is needed or not.

Online user manual

This should name a text file you write to orient new users to the
online services your module provides. This text file will be
automatically combined with others to form BBSUSER.DOC. That file
is (by default) attached to the welcoming Electronic Mail message
sent to all new users. It is also available online in the
Information Center. The convention is to use the same name as the
.MDF file with a .DOC extension.

DLLs
Name the Dynamic Link Library (or Libraries, up to five of them)
for your module. See page 19.

DEV-24 Galacticomm

MSGs

Name the .MSG files that contain CNF options (for the Sysop to
manage in Hardware Setup, Security and Accounting, Configuration
options, and Text Block Editing). More about CNF options starting
on page 55.

Btrieve page size

If your Add-on Option uses any Btrieve databases of its own, you
must name the maximum page size in bytes. This is also specified
in the .BCR files for creating the databases. See the Btrieve
documentation for more on page sizes.

Btrieve files

This is the number of .DAT Btrieve database files that your Add-on
Option will have open at a time. (We keep all .DAT files open for
the entire time the BBS is up.)

Cleanup
Name an .EXE or .BAT file to run when the BBS shuts down for

auto-cleanup. You can have multiple "Cleanup:" lines with
multiple DOS commands.

Event-1 through Event-4
Name an .EXE or .BAT file to run when the BBS shuts down for any
of the timed events.

Add-On Utility

If you want an offline utility to appear in the menu from option 8
of the introductory menu, specify the .EXE, .COM or .BAT file and
description of the option. For example:

Add-On Utility: DDDANLYZ (analyze color reciprocity)

The file DDDANLYZ.BAT (or DDDANLYZ.EXE, etc.) will be run if the
operator picks that option.

For aesthetics, we recommend that you fit the name within an
8-character left-justified field, capitalize the entire name,
follow it with one space, and append a lower-case description
in parenthesis. The description can be up to 40 characters long.

UNCONDITIONAL

If this word appears on a line by itself, anywhere in the .MDF
file, then your module is loaded unconditionally (whether
something in the operator’s Menu Tree calls for it or not).

INTERNAL

If this word appears on a line by itself anywhere in the .MDF
file, then your module won’t appear in the list of choices for
module pages. If your module is an INTERNAL module, you’ll almost
certainly want to make it also an UNCONDITIONAL module.

Developer’s Guide DEV-25

Language .MDF Files

Now, here is an example of an .MDF file for the "German,/RIP" Alternate
Language Add-on Option:

; GERMRIP.MDF (language file created by BBSLANG.EXE)
Module Name: German/RIP language
Developer: Sysop

Internal
Unconditional

Language: German/RIP

Language Description: Die deutsche Version von RIPscrip graphics
Language File Extension: .RIP

Language Editor: RIPAINT.DLL %s

Language Yes/No: JA/NEIN

This has a few additional constructs in it.

Language
The language name has a 1-8 character spoken language followed by a

slash (/) and a 1-6 character terminal protoccl. That's a total of
up to 15 characters.

Language Description

This description can be up to 40 characters long. It shows up when
picking a language out of a list, as in the CNF <F3> CHOOSE LANG
softkey, or online when users pick a language.

Lanquage File Extension

A file extension may be needed to store text for this language on
disk. This comes up when customizing menus under Menu Tree or
editing CNF options with certain custom editors.

For custom menus under the "/ANSI" languages, three file extensions
apply:

.IBM ANSI colors and cursor control with IBM extended ASCII
.ANS ANSI colors and cursor control with standard ASCII
.ASC Standard ASCII

When it comes time to use one of these files, here’s the decision
process that occurs in opnans() in MENUING.C:

If the user’s terminal has ANSI capability
If the user’s terminal is an IBEM PC
Use the .IBM file (or .ANS or .ASC as required)
otherwise
Use the .ANS file (or .IBM or .ASC as required)
otherwise
Use the .ASC file (or .ANS or .IBM as required)

For cother editors, you’ll probably want to specify a single file
extension, such as .RIP for RIPaint.

DEV-26 Galacticomm

When it comes time to custom design the way a menu looks, Menu Tree
will present a list of file names with all of the extensions for
all user-languages that are defined, as in:

Edit INFOMENU.IBM using BBSDRAHW
Edit INFOMENU.ANS using BBSDRAW
Edit INFOMENU.ASC using BBSDRAHW
Edit INFOMENU.RIP using RIPAINT
Edit INFOMENU.ZAP using ZAPDRAW

For CNF options, a temporary file is created for external editors
when they specify a DOS command line. The Language File Extension
will be used on that file.

Lanquage Editor
There are two cases where an editor is needed: CNF text blocks and

Menu Tree customized menus. BBSDRAW is the standard in-memory
editor and is specified like this:

Language Editor: BBSDRAH %s

Let’s say you want to use an editor named "ZOGEDIT" that expects the
file name as it's parameter and needs the "/A" switch for ANSI
capabilities, you’d specify:

Language Editor: Z2OGEDIT %s /A

Then when it came time to edit an option or a menu, the %s would be
replaced with a file name, and the above command executed as a DOS
command. We use a system() call on this command line, so DOS will
look for ZOGEDIT.BAT, ZOGEDIT.COM, or ZOGEDIT.EXE throughout the
path.

The first word of the language editor command line should be the
name of the editor. An optional extension could have special
meanings:

<name» to specify a DOS command line

<namey .EXE to specify a DOS .EXE file that can be "spawned"
as a daughter process (the daughter EXE file must
have a very large capacity for file handles --
this is not usually the best approach)

<name>.DLL to specify an editor in a DLL file (see page 169
about custom editors in DLLs that register
themselves)

In all cases the <name> part is advertised as the name of the
editor, both in CNF and in Menu Tree.

Any "%s" in the language editor command line gets replaced with the
name of the file to be edited.

Developer’s Guide DEV-27

Lanquage Yes/No
This line of the language .MDF file tells you what words to use for
"yes" and "no" in the language. For example:

Language Yes/No: Affirmative/Negative

In this case the letters 'A’ or 'N' will be expected in response to
a yes-or-no question. Clearly the first letter of each word must be
different.

There may be conflicte when certain prompts expect Y=yes, N=no or
other special characters. First, you should avoid words that start
with either "2’ or 'X’', as those characters have universal meaning
on the BBS. Also, a yes or no word that started with 'R’ would
conflict with the highly visible exit-logoff-relog situation where
users can choose (Y)es=logoff, (N)o=stay online, or (R)elog on.

The Language Yes/No directive also affects the operation of
cncyesno(). If a user enters an 'A’, cncyesno() will return 'Y’.
That way, your code can always check cncyesno() for 'Y’ or ’N’
return values. See page 76.

Users can also type in the entire yes or no string. ecneyesno() will
take it all, and still return 'Y’ or 'N’.

You can see that BBSMAI.MDF has the standard MDF information combined with
language information for the "English/ANSI" language.

DEV-28 Galacticomm

Initialization Routine (init_ xx())
The Major BBS will recognize any routine in your .DLL whose name starts with
"init " (that’s two underscores) as an initialization routine, and call
that routine when the BBS comes up. In your initialization routine, be sure
to:
o Declare it as EXPORT (page 17).
o Register your module with register module() (page 30).
o Open the CNF options file (.MCV in it’s runtime form) using
opnmsg() (page 65). You can read in options using routines
like numopt() and ynopt().

o Open any Btrieve databases you're using with opnbtwv()
(page 150).

o Declare how much if any of the Volatile Data Area that you’ll
need to service users, using dclvda() (page 46).

o BAllocate memory if you need it. (Try to use the Volatile
Data Area if at all possible.)

o0 Register global commands with globalcmd() (page 96).

o Prepare enough VDA memory for any Full Screen Data Entry
sessions using fsdroom() (page 103) and dclvda().

o Register text variables with register textvar() (page 73).

o Kick off any rtkick() routines (page 177).

Modules

A module is the main mechanism for making your code run on The Major BBS
while it’s online. There are other ways to run online code, like text
variables or global commands, but modules are by far the most powerful.

By registering a module, you complete one of the links necessary to make
your service available to users online. The other link is completed by the
Sysop, when he designs his Menu Tree. Remember that the Sysop ultimately
decides who uses each service and how the menus leading to it are
structured.

Here are the items to remember when making a module for The Major BBS:

o Put your initialization code in a routine whose name starts with
"init_ " (see above).

o In that initialization code, register your module using the
register module() function and a unique module structure.

o Compile and link your module code into a .DLL file
(page 19).

o Identify the .DLL file in your .MDF file (page 23).

Developer’s Guide DEV-29

statecode=register_module(ptrmodule); Register a module

int statecode; Value of usrptr->state
whenever user will be "in"
this module

struct module *ptrmodule; Pointer to your module
structure

You might use the statecode in some circumstance to determine if the user is
"in" your module (by comparing usrptr->state == statecode, for example).
Each time you call register module() you must pass a pointer to a unique
module structure.

Here is the data structure for each module, consisting of a description and
nine entry points (this comes from MAJORBBS.H):

extern

struct module { /* module interface block x/
char descrp[MNMSIZ]; /* description for main menu L4
int (*lonrou)(); J* user logon supplemental routine */
int (*sttrou)(); /* input routine if selected x/
void (*stsrou)(); /* status-input routine if selected */
int (*injrou)(); /* "injoth" routine for this module */
int (*lofrou)(); /* user logoff supplemental routine */
void (*huprou)(); /* hangup (lost carrier) routine */
void (*mcurou)(); /* midnight cleanup routine */
void (*dlarou)(); /* delete-account routine x/
void (*finrou)(); /* finish-up (sys shutdown) routine */

} **module;
Here are some sample pieces of code for initializing a simple module:

int colorinp(void);
void clscol(void);

struct module colormod={ /* module interface block */
- ! i name used to refer to this module */
NULL, I user logon supplemental routine */
colorinp, * input routine if selected Lird
dfsthn, I~ status-input routine if selected */
NULL, * "injoth" routine for this module */
NULL, e user logoff supplemental routine */
NULL, * hangup (lost carrier) routine */
NULL, ¥ i midnight cleanup routine */
NULL, /* delete-account routine */
clscol * finish-up (sys shutdown) routine */

bH

static

int colstt; /* ANSI color diagnostics, state no. bt

void EXPORT

init__colormod() /* the module initialization routine */

{
stzcpy(colormod.descrp, gmdnam("DDDCOLOR .MDF") MNMSI1Z);

colstt=register_module(&colormod);
>

As this example shows, you should leave the description blank (a zero-length
string) and read it in from your .MDF file during initialization. This
example reads in the module description from the DDDCOLOR.MDF file, such as:

Module Name: ANSI color diagnostics
This way, your module name is only in one spot: the .MDF file. (If the
description in the .descrp field disagrees with the one in the .MDF file,
then the module won’t be accessible: Menu Tree will call out one name, but
the other will be registered online.)

DEV-30 Galacticomm

any of the entry points can be NULL if you don’t need them except: stsrou()
(make it "dfsthn" if you don’t need special status handling, like in the
above example); and sttrou() (make it point to a function that returns zero
if your module has no menu-selectable interactive services). The above
example sets up to call the colorinp() for text input and clscol() when the
BBS shuts down.

Variables available to many of the entry points

The following global variables are set up by the executive before calling
any of the entry points lonrou(), sttrou(), stsrou(), lofrou(), or huprou():

int usrnum; the user number for the communications channel.

struct user *usrptr; points to that channel’s "user" struct (see
MAJORBBS.H) . For example, usrptr->baud is his
baud rate, usrptr-»>substt is his substate, etc.

struct extusr *extptr; points to extendable in-memory data for the
channel. (For upward compatibility, new in-memory
fields will be added here, and not to the user([]
array.)

struct usracc *usaptr; points to that channel’s "usracc" struct (see
page 158). For example, usaptr->userid is his
User-ID, usaptr-»usrpho is his phone number.
This information is stored in a database.

Each user’s session on the BBS is a procession through a series of states.
The states distinguish conditions like "waiting for him to type in his
User-ID", "waiting for him to type in his password", or "waiting for him to
decide whether to thread forward or backward from this Forum message".

The usrptr structure contains this state information, represented by three
variables (see MAJORBBS.H). These represent the "context" of the user:

usrptr->class Channel condition:

VACANT = 0 channel is not in use

ONLINE = 1 call has been answered (getting User-ID
and password)

BBSPRV = 2 acts similar to ACTUSR, except credit
deduction and time limits don’t apply
(a service might take advantage of this)

SUPIPG = 3 sign-up in progress (brand new user)

SUPLON = 4 supplemental log-on activity in progress
(using the lonrou() entry point)

SUPLOF = 5 supplemental log-off activity in progress

(using the lofrou() entry point)
ACTUSR = 6 logged on (using the sttrou()) entry point

(Don’t confuse usrptr->class with the user classes
that Sysops define from the Remote Sysop ACCOUNT menu
CLASS command -- the concepts are not related.)

usrptr->state Module number in use, corresponding to the return
value of register module(). (This makes sense only
when usrptr->class is one of the last three above
values.)

Developer’s Guide DEV-31

usrptr->substt Sub-state number within the module selected, if any.
This is usually some number indicating the question
last asked of the user. 1It’'s zero at the beginning of
a series of calls to sttrou() (when entering a module
page) or lonrou() (when logging on) or lofrou() (when
logging off). If those entry points return 1, then
they should also set usrptr->substt to a nonzero
value, so that they can recognize the context when
they are called again with a line of input from the
user. More about this on page 33.

The following global variables are available for any entry point where user
input is expected. This includes sttrou() for lines of text when the user
is "in" the module, and lonrou() and lofrou() when you’ve set up some
supplemental interaction during log-on or log-off (more on that below).

int margc; the number of separate arguments (words) in the
user’s input line (see page 74)
char *margv[]; table of pointers to the "words" of the user’s

input line
char *margn[]; table of pointers to the ends of the input words
int inplen; total length of the input line in bytes
int pfnlvl; profanity level of the input (0 to 3, mild to
severe)

The Volatile Data Area is maintained during any protracted interactive
session, as with sttrou(), lonrou(), and lofrou(). So you can use the VDA
for storing information to track that session. You can also use the VDA in
your huprou() entry point, with restrictions (see page 47).

char *vdaptr; ©points to the Volatile Data Area. This is memory
allocated for a channel, and used by the routines
of a module -- but used only while the module is
selected for that channel.

lonrou() - log on input service routine

You can use this entry point to give a user some kind of notice when he is
logging on, such as "Your stock rose 4 points last night". You can also use
lonrou() for a protracted interactive session with the user -- a series of
questions and answers, or prompts and commands that he goes through right
after logging on, such as "would you like to purchase more shares now?2",
"Ok, how many?", etc. This all happens before the user has a chance to make
a selection from the top menu.

The difference (one log-on message versus a series of log-on prompts and
responses) lies in the lonrou() return value.

lonrou() returns 0 you’re done with logging this user on

lonrou() returns 1 you're expecting the user to respond to
a prompt that you just sent to him

To send one log-on message, just make lonrou() always return 0. To go
through a series of prompts and responses, return 1 whenever you're
expecting more input from the user. Then lonrou() will be called again
when he types the next line of input.

DEV-32 Galacticomnm

When your lonrou() returns 0, the user will resume his log-on process.
(Perhaps there are other modules with lonrou()’s of their own. Otherwise
he’s ready to get the top menu.)

You can tell the first lonrou() from subsequent lonrou() calls by the
user’s substate:

usrptr->substt == 0 on the first call to lonrou(). Your lonrou()
routine should change it to something nonzero,

and return 1.

usrptr->substt == nonzero on subsquent calls. Keep changing this
substate between lonrou() calls. When done,
return 0.

While you’re lonrou() routine is "in effect" (until it returns 0), any
status codes on the channel trigger a call to your stsrou() entry point.

Note: to intercept the moment when a user first connects to the BBS, use
the handle-connect vector (*hdlcon)(). See page 84.

For special handling of new users who have just signed up, you could
maintain your own separate database of User-ID-tagged information and,
during lonrou(), look for the case when usaptr->userid isn’t in your
database yet. (And then insert it of course.)

sttrou() - module input service routine

sttrou() is the most heavily used entry point for most modules. It is first
called when a user selects your module (selects a module page that refers to
your module from a parent menu). After that, sttrou() is called each time a
user enters a CR-terminated input line while "in" the module. He gets "out"
of the module (returning to the parent menu) when the sttrou() routine
returns 0.

You can keep track of the user’s context with the usrptr->substt variable.
This is always zero when the user first enters a module. You can set it to
a different value for each prompt you send him, so that when you get his
reply, you can interpret it in the proper context.

TIP: We use the CNF option number codes for double duty: identifying the
prompt text block, and remembering the context (substate) of a reply.

Identifying the prompt text block: As you’ll see on page 65,

text blocks are identified (1) by their .MCV file (specified by
setmbk()), and (2) by an integer sequence number defined in the .H
file. That integer can be used in calls to prfmsg() to ocutput the
text block, for example:

setmbk (colmb);
prfmsg (PROMPT) ;

(colmb is returned by opnmsg(). PROMPT is from a BBSMSX-generated
.H file.)

Developer’s Guide DEV-33

Remembering the context (substate) of a reply: We often use the
integer sequence number defined in the .H file to remember the

last prompt sent to the user:
usrptr->substt=PROMPT;

That way when he replies to the prompt, his reply can be handled
in the proper context:

switch (usrptr-»substt) {

case PROMPT:
handleit (margc,margv(0]);
break;

}

We recommend that whenever the user enters the single letter ’X’, that he
exits out of whatever he’s doing and returns to a previous menu. If your
module has it’s own local menu (many do), then he returns to that menu,
unless he's already there, in which case he returns to the parent menu page.
We also recommend that whenever the user just hits <CR> all by itself (so
that margc == 0), that you re-transmit the last prompt. See page 36 about
handling asynchronous messages (such as user-to-user paging, Sysop-to-user
messages, etc.) in the injrou() entry point or by checking the INJOIP flag.

Entering and Exiting a Module

Special things happen when a user first enters a module. The input string
that’s parsed into words in margv[] (see page 74) is a combination of three
things:

o The select character that got the user inte this module (that’s
the single-character menu selection that the user typed, as defined
in Menu Tree Design for the parent menu page)

o The command string for the corresponding module page, if any
(the Sysop specified this in offline Menu Tree Design)

o HWhat the user typed after the select character, if anything

Also the substate (usrptr->substt) always starts at zero. The state
(usrptr->state) is the value returned to you by register module() when you
registered your module.

The sttrou() entry point for your module keeps getting called with each new
input line until your sttrou() routine returns a zero. That’s your way to
signify (to the BBS executive) that the user is exiting your module back to
the parent menu.

See page 78 for more about whether to exit to a module’s local menu or to
the parent menu page.

DEV-34 Galacticomm

stsrou() - status handler routine

The stsrou() entry point is invoked when the user is "in" the module (has
selected a module page that’s based on your module from some menu, or is in
the module’s log-on or log-off supplemental entry point), and the channel
detects a status condition. Here are some of those status conditions (for
more details, see the GSBL documentation):

Some values of the global variable "status"

5 Output to user has completed -- this status is intercepted
by the executive when it results from an injoth() (an
asynchronous message). In some cases however, an injoth() or
other system operation will let a status 5 slip through to
your stsrou() entry point. If yeu use status 5's yourself,
turn them on with btuoces(usrnum,l) and then send your output.
When you get the status 5, be sure to check context (such as
a flag or substate code) before processing it (spurious
status 5’s should be ignored or passed to dfsthn()). After
processing, turn off status 5's with btuoes(usrnum,0). If you
don’t turn them off, then you'll get a status 5 after every
prompt from then on.

2,12,22 The GSBL routine btucmd() has been passed a command and
that command has completed normally

240 Used by convention in The Major BBS for "cycle-mediated"
tasks. This value is represented by the constant CYCLE in
MAJOREBS.H. You can generate status 240’s artificially with
btuinj(usrnum,CYCLE). See page 48.

251 Data input overflow (usually harmless)
252 Echo buffer overflow

253 Data output overflow

254 Status input overflow (rather serious)
255 Command output overflow (rare)

Call dfsthn() (the default status handler) for status conditions your module
is not specifically expecting.

injrou() - reprompting routine

There are many cases when the BBS needs to immediately send a user a brief
message. An asynchronous message is one that interrupts the user’s normal
banter of prompts and commands. After the message is displayed, the user
needs to see his current prompt over again.

The injoth() function (see page 72) is used to send asynchronous messages
to a user’s terminal, such as "SYSTEM GOING DOWN", "FRED SMITH IS PAGING
YOU", or "YOUR FAX WAS SUCESSFULLY SENT". There are two ways your module
could handle this.

Developer’s Guide DEV-35

Asynchronous message handling method 1: If the injrou field of your
module structure is NULL, the executive just simulates a <CR> from the
user’s terminal to get the user’s prompt back. If you need to use the
condition of an empty input line for some purpose other than for
reprompting (such as for default answers) then you can detect the use of
injoth() with a test similar to this (this could be an excerpt of your
sttrou() routine):

if ((usrptr->flags&INJOIP) = 0) {
handlecommand() ;

else {
reprompt();
}

Asynchronous message handling method 2: the injrou() entry point, if one
exists in your module, is called when an asynchronous message needs to get
through to the user. The message is already formatted in the prfbuf buffer
and can be transmitted with btuxmn(). You should also resend the latest
prompt. For example, here’s an excerpt of a possible injrou() routine:

btuxmn (othusn, prfbuf) ;
btuoes (othusn,l);

user [octhusn].flags|=INJOIP;
return(l);

In fact, this is exactly the code in dftinj() that get’s executed when there
is no injrou() entry point (except that dftinj() has no return value --
don't use it as your injrou() routine). There’s little point to having an
injrou() routine that'’s exactly the above, but you could make little
modifications to it. The btuxmn() is used in place of an outprf(othusn),
specifically so that a user <Ctrl-0> abort of text output doesn’t clobber
the message. You may have some other way of displaying the message (e.q.
transmitting an ANSI sequence to pop up a window or something). Setting
btuoes (othusn,1), and setting the INJOIP flag prepares for a future call to
the sttrou() entry point with the INJOIP flag set, asking for a reprompt.

Your injrou() entry point must not modify the prfbuf buffer
contents. Those contents may be needed for output to other
channels.

So to reprompt after displaying the asynchronous message, use btuoes() and
INJOIP, as shown above.

Note the use of othusn instead of usrnum. Whatever instigated this
asynchronous message, it probably didn’t happen due to a process on the
recipient’s channel. It may be in response to a "/p" global page command
from another users channel, or to a send-message softkey command from the
Sysop's console. So the familiar usrptr is not defined at this point.

int othusn; User number of the channel that is to receive
the asynchronous message.

DEV-36 Galacticomm

Remember that in your injrou() routine:

Don't use usrnum, use othusn.

Don't use usrptr->substt, use user[othusn].substt.
Don’t use usaptr-»>userid, use uacoff (othusn)->userid.
Don't use extptr->lingo, use extoff(othusn)->lingo.

o0o0oo0O©0

Your injrou() routine needs to return a value indicating whether the user
got the message or not:

return 0 if the user could not be interrupted at the moment
return 1 if the message was sent to the user’s terminal

This, quite logically is also the return value of injoth() (see page 72).

lofrou() - log off input service routine

You can use this entry point to give a user some kind of notice when he logs
off, such as "Thank you for your purchase order of 12 items". You can also
use lofrou() for a protracted interactive session with the user -- a series
of guestions and answers, or prompts and commands that he goes through just
before logging off, such as "Would you like your order shipped to you within
six hours by Lazer Express for an extra $29?", "Then we’ll need your
complete 9-digit ZIP+4 code:", etc. This all happens before the final "Are
you sure you want to log off (Y/N)?" prompt.

The difference (one log-off message versus a series of log-off prompts and
responses) lies in the lofrou() return value.

lofrou() returns 0 you're done with this user, he can log off

lofrou() returns 1 you’re expecting the user to respond to
a prompt that you just sent to him

lofrou() returns -1 user does not want to log off after all,
return him to his most recent menu

To send one log-off message, just make lofrou() always return 0. To go
through a series of prompts and responses, return 1 whenever you're
expecting more input from the user. Then lofrou() will be called again
when he types the next line of input.

When your lofrou() returns 0, the user will resume his log-off process.
(Perhaps there are other modules with lofrou()’s of their own. Otherwise
he’s ready to cenfirm that he really wants to get disconnected.)

You can tell the first lofrou() from subsequent lofrou() calls by the
user’s substate:

usrptr->substt == 0 on the first call to lofrou(). (Change
usrptr->substt to something else, and return 1.)

usrptr->substt == nonzero on subsequent calls to lofrou(), until
lofrou() returns 0.

Developer’s Guide DEV-37

huprou() - user disconnect routine

Every module’s huprou() entry point is invoked whenever a fully-logged-on
user loses carrier. You can use this to de-allocate any resources you might
have allocated for the user (be careful with the Volatile Data Area, see
page 47). If NULL, no action is taken.

mcurou() - auto-cleanup routine

The mcurou() entry point of each module is invoked once per day, (default
time: 3:00 AM). EMAIL.C uses this opportunity to scan the Electronic Mail
database for stale messages (over 3 weeks old by default). This entry point
may be NULL if the module has no need for auto cleanup processing. You can
also use the "Auto Utility:" line of the .MDF file to specify offline
processing during the auto-cleanup. See page 25.

dlarou() - delete user account routine

This entry point is called for all modules when a user account is deleted. A
pointer to the User-ID of the account to be deleted is passed as an explicit
parameter to this routine.

The dlarou() entry point exists so that if any special, module-specific
actions are necessary when an account is deleted, they will get done. For
example, the Registry module maintains a separate database, keyed by
User-ID, containing all of the information the user had entered in response
to the Registry questionnaire. when a user’s account on the BBS is deleted,
the corresponding Registry entry should be deleted from the Registry
database too, so as not to waste disk space and create account-confusion
problems. Therefore, the Registry’s dlarou() entry point routine deletes
the record for the user, if it exists, from the Registry database.

finrou() - system shutdown routine

Finally, the finrou() entry point is invoked as the system is shutting down
and returning to DOS -- this is the place to flush buffers, close files, and
so on. In general, you will be undoing whatever was fired up by the
corresponding init xxx() routine that registered your module. This entry
point will be called when a "catastro" fatal error occurs (see page 51),

in an attempt to save whatever can be saved before returning to DOS. This
routine should be designed to safely execute in this kind of hostile
situation. For example, say your init xxx() had some code that did this:

if ((localfp=fopen("SOMEFILE.TXT",FOPWA)) == NULL) {
catastro("Cannot create SOMEFILE.TXT!");
}

DEV-38 Galacticomm

Then your finrou() entry point could do this:

if (localfp != NULL) {
fclose(localfp);
localfp=NULL;

}

That way, the fclose() is guaranteed to execute no more than once, and then
only if the file had been opened in the first place.

Channel Numbering and Grouping

The Major BBS can handle up to 256 communication channels simultaneously.
Channels are numbered in hexadecimal from 0 to FF.

Channel numbers are assigned to actual hardware devices in Hardware Setup,
with the STARTx options (starting channel number for each group 1-16). See
the System Operations Manual for The Major BBS. Channel numbers need not be
assigned sequentially. The Sysop can have a GalactiBox on channels 10 to
1F, a PC Xnet card on channels EO to FF, and a COM3 modem on channel 03.

Channel numbers control where an online user is indicated on the Summary and
Online User Information screens. Channel numbers are also recorded in most
audit trail messages.

Channel numbers are used to identify channels for the Sysop.

The total quantity of channels that are defined adds up to an important value,
called "nterms". Many data structures in The Major BBS are multiplied by this
value.

int nterms; total number of channels defined

Channel 00 is reserved for local Sysop emulation, and counts as one of the
defined channels that add up to nterms.

User Numbers

Independent of channel numbering, there is an internal index called a user
number. User numbers are assigned sequentially to each channel that is
defined. So user numbers always run from 0 to nterms-1. The global
variable "usrnum" is set to the user number of the user currently being
serviced.

User numbers are used internally to identify each channel.

usrnum has the following additional values for special occasions:
User number -1 Channel FFFF (hex) Operator Console operations

User number -2 Channel FFFE (hex) Auto-Cleanup operations
User number -3 Channel FFFD (hex) Timed shutdown event

Developer’s Guide DEV-39

User numbers are used to index the arrays that are dimensioned by the value
nterms. Almost all of the low-level hardware interface routines in the
Galacticomm Software Breakthrough Library deal directly with a specific
communications channel, and this channel is specified by this user number ,
not by the channel number that the Sysop assigns.

If you want to change the value of the usrnum variable, even temporarily,
it’s a good idea to use curusr() to do it. See page 73.

The array channel[] in MAJORBBS.C translates from user number to channel
number :
channel[<user number>] == <channel number>

The function usridx(), also in MAJORBBS.C, does the reverse translation (or
returns -1 for unassigned channel numbers):

usridx(<channel number>) == <user number>
User number nterms-1 is channel number 00, and is reserved for local Sysop

emulation.

Group Numbers

The Major BBS can have up to 16 channel groups, nominally and internally

numbered 1 to 16. (Use the constant NGROUPS for the number of groups).
grpnum[<user number>] == <group number>

You can use this to determine the channel type of a group using the grtype[]
array:

grtype(<group number>] == <group type code>

Group Type Codes (from MAJORBBS.H)

#define GTMODEM 1 /* group type code: Modem channels *
#define GTMLOCK 2 /* group type code: Locked modem channels */
#define GTSERIAL 3 /* group type code: Serial channels */
#define GTX25 4 /* group type code: X.25 channels */
#define GTLAN 5 /* group type code: LAN channels bt
#idefine GTNONE O /* group type code: No channels defined g

Here is an example of testing a channel’s type:

if (grtype[grpnum[usrnum]] == GTLAN) {
... LAN channel type ...

else if (usrptr->flags&Isx25) {
. X.25 channel type ...

else {

}

Note that there are two ways to check for an X.25 channel. The flag check
(when done by itself) takes less code.

. other channel type ...

DEV-40 Galacticomm

Data Structures and Memory Allocation

The Major BBS has numerous ways of handling data, based upon how long the data
must last (its lifetime) and upon how often, or in what manner, the data must

be accessed.
DATA STRUCTURES AVAILABLE TO ALL MODULES
Structure Lifetime Access See page
CNF options Unlimited Disk (direct) 55
Online User status and User session Memory 81
session information (usrptr)
Online user detail (usaptr) Unlimited Memory 158
Offline user detail Unlimited Disk (indexed) 158
(BBSUSR.DAT)
System variables (sv, sv2) Unlimited Memory 157
DATA STRUCTURES FOR USE BY A SPECIFIC MODULE
Structure Lifetime Access See page
Volatile Data Area Module active Memory 46
alcmem() memory BBS session Memory 42
File opened using fopen() Unlimited Disk (sequential) 50
File opened using opnbtv() Unlimited Disk (indexed) 149

EXAMPLES OF DATA USED BY A SPECIFIC MODULE

Structure Lifetime Access
Electronic Mail message 21 days (default) Disk (indexed)
Uploaded attachment to an 14 days (default) Disk (sequential)
E-mail message
Online user’s Forum quick- Unlimited Memory
scan configuration
User log-off record BBS session Memory
Lifetime Explanation
o Unlimited For the life of your hard disk (or until someone
explicitly changes the information)

o BBS Session While the BBS is "on-the-air"

o User Session while a user is online

o Module active Between the time a user selects a module from the

Developer’s Guide

Menu Tree, and exits that module

DEV-41

Access Explanation

¢ Memory Access is fastest

o Disk (direct) Access requires reading only a sector or two

o Disk (sequential) Access as a serial stream of bytes

o Disk (indexed) Access records by their content (using Btrieve)

You must take careful consideration of the scope of a variable before you use
it. For example, some mistakes to watch out for:

o Referencing BBSUSR.DAT for account detail on a user who is
online. If your application must deal with the accounting
detail of a user, be sure to use uacoff() (page 82), for
online users, or the "BBSUSR.DAT" database record for offline
users (these have the same structure, see page 158). You can
see how the module addcrd() in ACCOUNT.C makes this
distinction when it adds credits to a user’s account.

0 Unconditicnal use of the Volatile Data Area in the huprou()
entry point. If your module requests temporary use of the
Volatile Data Area, your module can freely use the area in its
sttrou() (line input) and stsrou() (status) entry points. But
your module should not use the Volatile Data Area in the
huprou() entry point unless the usrptr-»>state code is equal to
the module’s handle (return value of register module()), i.e.
unless the user hung up when he was "in" your module. See
page 46 for more details.

o If you are developing a global command handler (page 96), be
careful not to use the vdaptr memory area. This might conflict
with the use of vdaptr by whatever module the user is working
in, such as Electronic Mail. Use the vdatmp buffer only for
one-shot ad hoc purposes (see page 47).

0 Heeding all of these cautions, use the Volatile Data Area
whenever you can, rather than alcmem()’ing your own memory
region. This will keep the BBS's use of memory from getting

out of hand.
region=alcmem(nbytes); Dynamically allocate some memory
char *region; pointer to the region
unsigned nbytes; size of the region, in bytes

(up to 65530)

This routine differs from the standard C malloc() allocation function, in
that alcmem() NEVER returns the value NULL. Any memory allocation errors
are handled by the shut-down routine memcata() (see page 52).

Since memory allocation is relatively time consuming, we recommend that you
avoid using alcmem() for short-term solutions. The Volatile Data Area is
better for data that is only needed while a user is in a specific module
(see below).

Memory allocated using alcmem() is automatically deallocated when The Major

BBS shuts down and returns to DOS. To deallocate yourself, you may use the
standard Borland library routine free().

DEV-42 Galacticomm

To move an already-allocated block of memory into bigger (or smaller) living
quarters:

newspace=alcrsz(oldspace,oldsize,newsize);
Reallocate space to a different size

char *newspace; new space
char *oldspace; old space
unsigned oldsize; old size
unsigned newsize; new size

The new space will have the same contents as the old space, up to the size
of the smaller space. If oldspace is NULL, or oldsize is zero, then
alersz() will act exactly like alcmem(newsize). Otherwise, the oldspace
parameter should be the return value of an earlier call to alcmem() (or an
equivalent routine, such as alcrsz() itself). Like alcmem(), alcrsz() will
never return NULL (it will catastro() if it runs into trouble).

To allocate new space for an existing NUL-terminated string:

newspace=alcdup(string); Allocate new space for a string
char *newspace; new space
char *string; old space

You might do this if the old space is volatile and about to be used for some
other purpose. The alcdup() routine is similar to the Borland library
function strdup(), except that alcdup() will never return NULL.

zregion=alczer (nbytes); Allocate new memory and zero it out
char *zregion; address of new memory
unsigned nbytes; size in bytes

This routine is just like alcmem() except that the new memory is filled with
zero bytes.

If you’'re allocating an array of blocks, one per channel (that is,
"nterms" of them), then you should only use alcmem() or alczer() if
each block is smaller than 256 bytes. If the block is 256 bytes

or larger, you should use alcblok() or alctile().

To allocate more than 64K worth of memory at a time, you’ll need a way to
break it down into smaller parts. There are two schemes for doing this that
differ in how the memory is allocated, but are almost identical functionally.
alctile() gives you a different selector for each of these smaller parts, and
alcblok() crams as many parts into each selector as possible.

If you're allocating an nterms array (an array of structures, one per online

user), and that structure is 256 bytes or larger, then the array could be

256 x 256 = 65,536 bytes or larger, and you need to use one of these schemes.
The prime recommended method for allocating a region that is N x M bytes long
is to use alcblok():

bigregicn=alcblok(qgty,sizblock); Allocate a very large memory
region, gty by sizblock bytes

void *bigregion; return value, for ptrblok() only

unsigned qty; number of "blocks"

unsigned sizblock; size of each "block"

Developer’s Guide DEV-43

The alcblok() routine never returns NULL (it calls catastro() in case of
insufficient available memory). If gty x sizblock is less than about 64K,
alcblok() only allocates one region. Otherwise it will allocate multiple
regions of up to 64K each.

When you want to use one of the individual blocks, you have to pass the
"bigregion" return value to ptrblok():

block=ptrblok(bigregion,unum); Dereference an alcblok()'d region
void *block; pointer to an individual block

void *bigregion; return value from original alcblok()
unsigned unum; index, 0 to qty-1

The alcblok() return value can only be passed to ptrblok() and not
dereferenced in any other way. You should store it in a variable declared
to be type "void *". The ptrblok() return value on the other hand can be
assigned or cast to the native type of your blocks (whatever it is you're
allocating that has "sizblock" bytes). Typically you would cast it to a
variable of type (struct something *).

This is roughly how we allocate memory in MAJORBBS.C for the Volatile Data
Area, and in FILEXFER.C for the file transfer session control blocks.

The "unum" parameter is an index between 0 and gty-1 ("gty" was passed to
the original alcblok()). ptrblok() returns a pointer to the block of memory
sizblock bytes long corresponding to this index. Each value from 0 to gty-1
will give you a different block. You shouldn’t count on any other aspect of
the ptrblok() return values. For example, different values of unum might or
might not produce pointers with different selectors.

In general you can count on ptrblok() never returning NULL. The only
exception might be if you abusively call it with a NULL bigregion, or an
out-of-range unum.

The other method for large memory allocation is alctile(). There is a
corresponding ptrtile() routine, which is the only legal way for
dereferencing alctile()’s return value, just like the alcblok()/ptrblok()
cousins. In fact the calling parameters are identical too:

bigregion=alctile(gty,sizblock); Allocate a very large memory

region, gty by sizblock bytes
void *bigregion; return value, for ptrtile() only
unsigned qgty; number of "tiles"
unsigned sizblock; size of each "tile"
block=ptrtile(bigregion,unum); Dereference an alctile() region
void *block; pointer to a tile (offset always 0)
void *bigregion; return value from original alctile()
unsigned unum; index, 0 to gty-1

what'’s happening under Phar Lap is that the region is "tiled" into a series
of regions that are each smaller than 64K. Each region gets a different
selector, and its base offset is guaranteed to be zero.

DEV-44 Galacticomm

You might need this special feature of alctile()/ptrtile(), but it is
usually much better to use alcblok()/ptrblok() if at all possible, because
of the latter routine’s economy with selectors. Every computer has a
rock-solid limit of 8192 selectors, no matter how much memory it has. (That
limit is imposed by the number of possible 16-bit values with the three low
order bits set to 111.) So selector economy is a very desirable thing.

By the way, there is no way to free the memory allocated by alcblok() or
alctile() before the program terminates (at which time the memory is
automatically freed, of course). It’s assumed that you'll be keeping these
very large regions of memory in use for the duration of the program.

We use the following routines for general purpose handling of memory regions:

movmen (source ,destination,nbytes) Move a block of memory

char *source; source block

char *destination; where to put it

unsigned nbytes; number of bytes, 1 to 65535
setmem(destination,nbytes,value) Set a block of memory to a value
char *destination; pointer to the block

unsigned nbytes; number of bytes, 1 to 65535
char value; 1-byte value or character

repmen(destination,pattern,nbyt) Replicate a pattern in memory

void *destination; where to put it
char *pattern; NUL-terminated string
int nbyt; total number of bytes at dest

The repmem() function will replicate [nbyt/strlen(pattern)] copies of the
pattern at the destination. (The ’'\0’ terminator of pattern is not
replicated.) If that quotient is not an integer, the last copy of the
pattern will be truncated, but exactly nbyt bytes will be written. No NUL
is ever written to destination.

chimove(source,destination,nbytes)
Reentrant version of movmem()

char *source; source block
char *destination; where to put it
unsigned nbytes; number of bytes, 1 to 65535

The chimove() function can be called by interrupt routines as well as
mainline routines without conflict.

memavl=sizmem(); Find out how much memory is
available
long memavl; number of bytes

Developer’s Guide DEV-45

Volatile Data Area

dclvda(nbytes); Declare size of the Volatile Data Area
int nbytes; size in bytes

This function should only be called by your init xxx() routines (see

page 29). The function declares the maximum size that the module will
require of the Volatile Data Area. Each user online will be given a
separate region of this size. When the user selects a module page from a
menu option, the corresponding module may use that region until the user
exits back to the parent menu again. For example, if the Electronic Mail
module requires 1000 bytes and the Registry module requires 500 bytes of the
Volatile Data Area, they should both declare these amounts in their

init _xxx() routines. 1000 bytes will be allocated (the larger of the two).

char *vdaptr; Points to the Volatile Data Area

This global variable points to a memory region that is allocated for each
user who is online, and is used by the module that is in effect at the time.
The variable vdaptr is set to point to the appropriate regicn upon each call
to these entry points for the module:

sttrou() character line input after user selects the module page
lonrou() log-on message / line input during log-on

lofrou() log-off message / line input during log-off

stsrou() status input

Continuing the abcve example for dclvda(), each time that a user in E-mail
types in a line, the sttrou() entry point for E-mail is invoked (see

page 33) and the global variable vdaptr points to that user’s Volatile Data
Area. The E-mail software is free to store whatever it likes there for the
duration of the user’s stay in E-mail.

int vdasiz; The actual size of the Volatile
Data Area.

Of course, vdasiz is only valid when all the voting is done -- that is, at
any point other than your init_ xxx() routine.

DEV-46 Galacticomm

The entry point:
huprou() hang up

may also use the Volatile Data Area under the condition that:
usrptr->state = <module number>

where <module number> is the return value of register module() (page 30)

of the module whose huprou() entry point has been called. In other words,
huprou() may work with the Volatile Data Area if the user hung up while that
module was active (while the corresponding menu option was selected).
Remember that whenever a user logs off or hangs up, The Major BBS calls the
huprou() entry point of every mcdule, not just that of the module he was
using. So if your huprou() entry point detects that the user who is logging
off was inside of your module (using the above test), then huprou() may take
appropriate steps to clean up any unfinished business in the Volatile Data
Area. Otherwise, it must leave the VDA alone.

char *vdatmp; Points to the ad hoc Volatile Data Area

This additional area is available after the initialization entry points have
been called for all modules and the Volatile Data Areas (page 46) have

been allocated for each channel. "vdatmp" is to be used for brief ad hoc
purposes. You can’t depend on the contents of the buffer it points to being
preserved through any cycle of the BBS. You can only use vdatmp within a
single call to any of the other entry points, or within a single rtkick()
invocaticn, or within other routines for short-term purposes (but not within
your init xxx() routine).

For one example of vdatmp usage, see the implementation of the global "/r"
registry lookup command in REGISTRY.C (function gloreg()).

char *vdaoff (unum); " Compute volatile data pointer for
int unum; some other user

This routine is used whenever you need to access the volatile data area of
some user other than the one that you are directly servicing (the one
referred to by the global variable "usrnum"). You might use this to

check before a user deletes an item, to make sure that no other users are
using it at the same time. Just remember that any module other than your
module can make any use of the VDA that it pleases. You’ll probably only
want to use vdoff() on users who are also in your module.

Developer’s Guide DEV-47

Ways to Split up a Long Task

Since The Major BBS is a multi-user system, it cannot work on any one task
for too long at a time. If it did, then some users would experience an
annoying delay in the response time of the BBS. (By the way, this delay
would not show up between character transmissions to the user through the
modems -- those are interrupt driven. Echoes of user keystrokes are also
interrupt driven. Rather, this kind of delay might show up in the time
between a user typing in a line and receiving his next prompt.) A certain
amount of delay cannot be avoided, particularly with disk I/0.

If you have a time-consuming task to perform, and if you can break that task
down into chewable computation bites, then you can improve BBS response time
in two ways:

Cycle Mediating Simulating CYCLE status codes
Polling Routine begin polling() and stop polling()

Cycle Mediating

The trick is this: perform a little bit of the task and then generate a
status 240 condition. Channel status conditions are managed internally by
the GSBL (Galacticomm Software Breakthrough Library). Then when that status
240 is reported back to you, do a little more work on the task, generate
another status condition, and so on. This allows The Major BBS to service
all other channels that are online, plus perform other housekeeping chores,
while it’s also working for the user in your module. (You will see in your
GSBL manual that the status code we use for this "cycle mediating" purpose,
status 240, is reserved for application program use.) In the source file
MAJORBBS.H, the constant "CYCLE" is defined as 240. You can see how this
scheme is used in the status handler for Electronic Mail and for Forums --
function emsthn() in ESGUTL.C.

As a simple example, suppose a module, when selected by a user, simply
displayed four lines on the user’s screen and then, after the user hit the
return key, returned to the parent menu, as follows:

line 1
line 2
line 3
line 4

Hit RETURN (wait until user hits return key)
back to menu...

{In practice, you would never split up such a small task.)

DEV-48 Galacticomm

The task is split up into four sub-tasks using the “cycle-mediated" method.
The following functions would be used for the sttrou() and stsrou() entry
points:

STATIC int
sttexm(void)
{
switch (usrptr->substt) {
case 0:
prf("line 1\n");
outprf(usrnum);
btuinj(usrnum,CYCLE) ;
usrptr->substt=1;
return(l);
case 4:
prf("back to menu...\n");
cutprf (usrnum) ;
return(0);

return(l);

}

STATIC void
stsexm(void)

if (status == CYCLE) {
switch (usrptr->substt) {
case 1:
prf("line 2\n");
usrptr-»substt=2;
btuinj(usrnum,CYCLE) ;
break;
case 2:
prf("line 3\n");
usrptr->substt=3;
btuinj(usrnum,CYCLE) ;
break;
case 3:
prf("line 4\n\nHit RETURN ");
usrptr->substt=4;
break;
default:
dfsthn();
return;

outprf(usrnum) ;

else {
dfsthn();
}

Developer’s Guide DEV-49

Notes:

o usrptr->substt is used to keep track of the progress of each
user that selects this module from a menu. It is always
set to zero when a user first selects the module.

o prf() is like printf(), except that the converted text goes into
a buffer. outprf() transmits the contents of that buffer to a
specific user.

o stsexm() calls dfsthn() (the default status handler, in
MAJOREBS.C) when stsexm() encounters a status code that it is
not expressly designed to deal with.

Polling Routine

The other way to break a long task down into parts is by registering a
poelling routine. Each channel can have a polling routine that is called
reqularly. The actual polling rate depends on system loading, but it can be
very rapid.

begin_polling(unum,rouptr); Turn on polling for this channel
int unum; User number for the channel
void (*rouptr)(veid)); Polling routine (no parameters,

no return value)

stop_polling(unum); Turn off polling for this channel
int unum; User number for the channel

To start, register the polling routine with begin polling(). The

stop polling() function is often called by the polling routine itself, when
it decides polling is over.

File Handles (fopen())

The Major BBS supports up to 256 users simultaneously. So it needs to have
numerpus files open simultaneously. Unfortunately, DOS "EXE" programs, and
most compilers support only 20 file handles. To get around that limitation,
we’ve included code in the PHGCOMM.LIB library that increases the file
handling capacity. It’s important that linker response files list
PHGCOMM.LIB before the patched Borland library BCH286.LIB (as is done in
LTBBS.LNK) for this to work.

This allows up to 254 total files to be open simultaneously, using
either the standard "fopen()" or "open()" routines (we use fopen()).

The Major BBS as shipped from the factory was compiled and linked with these
modified routines installed, so the MAJORBBS.EXE file can handle more file
handles. 1If you’re develcping your own Add-on Option, your .DLL code will use
the fopen() that’s in MAJORBBS.EXE.

DEV-50 Galacticomm

The Second Parameter of fopen()

Use the following constants for the second parameter of fopen(), depending
on how you will use the file:

FOPRA Read in ASCII mode
FOPRB Read in Binary mode
FOPHA Write in ASCII mode
FOPWB Write in Binary mode
FOPAA Append in ASCII mode
FOPAB Append in Binary mode

Exception Handling (catastro())

catastro(ctlstg,pl,p2,...,pn) "catastrophic" error, exit to DOS
char *ctlstg; control string for error message
TYPE pl,p2,...pn; parameters for error message

(maximum 8 bytes of parameters)

This module is called under numerous failure mode conditions. You should
remember that catastro() failure conditions are severe cases, such as
missing databases, DOS errors, Or illegal formatting in the CNF options (see
page 52 about insufficient memory errors).

So, when to use catastro()? Most often, it's to give a bumbling Sysop a
soft place to fall. There are many cases when not to. If it's a likely
Sysop mistake, then the Sysop procedures need reworking. If it's a
programming mistake, then you may need more safequards. If it’s the result
of something bizarre that a non-Sysop user has done, you absolutely must
keep the system up and not penalize innocent bystander users.

Typical catastro() events are things that should "never happen" under normal
conditions. But when Murphy’s Law prevails and they do happen, it should be
orderly. It’s good to use a catastro() when the alternative would be a
chaotic hard-to-trace result that nobody in their right mind would want.

Say you’re using two databases and you just know that if you pull a

certain name from the A database, that the same name will appear in the B
database one or more times. Well, the Sysop could trip you up by failing to
properly restore both database files from a backup in tandem. The result
should not be that the program destroys both databases.

when choosing the wording of your catastro() message, try to keep in mind
honest mistakes the Sysop could make and use plain english to lead him toward
a solution. A Sysop is more likely to be able to handle "Cannot find file
¥OX.ZOO" than "Fopen() is NULL on XXXX.ZOO". Here's the point: word
Sysop-causable errors for Sysops and word errors that only a programming error
could cause for programmers.

Often, rather than calling catastro(), you can just allow something
unpleasant but isolated happen, like the user who triggered the unhappy
event could Jet an empty list with no explanation (but not trash -—- sending
trash to the screen might have unpredictable consequences). For example,
you should apply extra caution when processing strings that they don’t
overflow the destination buffer -- use stzcpy(), or brutally chop off the
source string if you have to.

Developer’s Guide DEV-51

Now, to make every function that deals with a pointer check for NULL is
pretty silly, so a balance is needed. For example, whenever you use fopen()
to open a file, always check for NULL, so that if a Sysop messes up his
installation or runs out of disk space he get’s something predictable and
not a wild memory write followed by a computer lock-up. Nothing’s worse
than an intermittent lock-up.

A non-Sysop user should never be able to trigger a catastro() -- your
customers’ BBSes would vulnerable to hackers.

Here is an example of how you would use catastro() to handle the case of a
missing file:

if ((fp=fopen("NEEDTHIS.FIL",FOPRA)) == NULL) {
catastro("Cannot find the file \"NEEDTHIS.FIL\"!");
}

Note that the function for opening Btrieve databases, opnbtv() (page 150),
has a built-in catastro() to handle the file-not-found condition (BTRIEVE
OPEN ERROR 12).

The parameters are identical to those of the standard printf(), but no more
than 16 bytes of parameters (that’s not including the control string) can be
passed. For example, each of the following would exhaust the parameter list
pl,p2,...,pn, but they would work:

4 pointers to character strings
8 integers
8 characters (remember, a character parameter takes up 2 bytes)

Note: no long integer or floating point values can be used as parameters
(i.e. your control string cannot contain "%1d" or "$f" directives). If you
need to make such conversions, see about the 12as() and spr() functions
starting around page 175.

All catastro() messages are written to the text file CATASTRO.TXT with a

time and date stamp, assuming, of course, the system is still capable of
writing to disk rationally.

Insufficient Memory (memcata())

All errors that result from a quantitative lack of memory should not
call catastro(), they should call memcata():

memcata(); Generate a catastro() with a polite
message about insufficient memory:
"There is not enough memory to
continue. Please either reduce
your memory requirements or install
more memory, and try again."

(The routines alcmem() and alczer() have their own internal calls to
memcata(). They never return NULL.)

DEV-52 Galacticomm

Lanquages

The Major BBS can support multiple spoken languages ("English", "French",
"German"), multiple dialects ("Expert", "Tutorial"), and multiple terminal
protocols ("ANSI", "RIP") for multiple users simultaneously. Language names
consist of a 1-8 character spoken language, a slash, and a 1-6 character
terminal protocol. That’s a total of up to 15 characters. Some examples:

English/ANSI Spanish/RIP Expert/ANSI
English/RIP German/ANSI Staff /ANSI
Spanish/ANSI German/RIP Tutorial /RIP

The multilingual feature primarily allows different versions of user output
to be defined for different languages. The BBS won’'t translate user input
(e.g. menu selections and commands). For example, if a user has to type 'R’
for read or 'W’ for write, he’ll have to do the same thing in all languages.
The best way to handle this is in the way the prompts are worded, for example:

RDOWRT {(R)ead or (W)rite? },{(L)eer or (E)scribir?} ..is wrong..
RDOWRT {(R)ead or (W)rite? },{R=Leer, W=Escribir?} «.18 right..

One exception: YES and NO responses can be translated. Different lanquages
can mean that the BBS expects different strings for "yes" and "no". This
affects the operation of the cncyesno() routine, and some other special cases.
You can use lingyn() for those special cases: it translates a user’s
single-character response into 'Y’ or 'N’ depending on their language (see
page 77).

When the BBS comes up it builds a list of the user-languages that are defined
on the BBS and sets a few global variables:

nlingo number of languages defined, always at least 1

clingo language index, 0 to nlingo-1, for the current
user

extptr->lingo usually the same as clingo

extoff (n)->lingo language index of user number n

(where n is 0 to nterms-1)
languages[clingo]->name name of the current user'’s language
languages[clingo]->desc description of the current user’s language

See LINGO.H for more fields in the languages[] array of language information
structures.

The main function of clingo occurs when reading in the type "T" (text block)
CNF options from disk. There can be a different version of each type e
option for each language, and the value of clingo determines which version to
read in. We’ll get into this more on page 65.

To look up the index of a language by its name:

ilingo=lngfnd(lngnam); look up a language by it's name
char *1lngnam; name of language, 1 to 15 characters long
int ilingo; language index, 0 to nlingo-1, or -l=unknown

Developer’s Guide DEV-53

To show users a list of all languages for them to pick:

prf("\rkhich language/protocol would you prefer to use on this BBS?");
lnglist(l);
Ingfoot(1);

You’d be better to use prfmsg() (page 65) than prf() of course, but using
prf() is a better way to show you what’s going on in this example. The "1"
parameter to lnglist() and lngfoot() means offer all languages as options
for the user to pick. Use a "0" instead to only offer those languages with
the top voting confidence factors (more about that on page 88). Here's how
you might put the user’s choice into effect:

int ilingo;

if ((ilingo=cnclng()) != -1) {
clingo=extptr->lingo=ilingo;
}

Either a number or a language name will satisfy cneclng(). After this, all
future prfmsg{) output on this channel will be in the new language.

Maximum Number of Lanquages

He claim that The Major BBS can support up to 50 simultaneous languages,
but the practical limit is probably higher. The tightest constraint comes
from the needs of a certain structure in each .MCV file. You can compute
that limit like this:

language limit = 32767 / number of options in the .MSG file

There’s actually a different language limit for each individual .MSG file.

For example, BBSMAJOR.MSG has about 300 options in it, so it should be able to
support over 100 languages. That means that each text block in BBSMAJOR.MSG
could have 100 different versions. But if one Sysop’s EBSMAJOR.MSG had 100
languages, then problems could occur if a future release of BBSMAJOR.MSG had
more than 327 options. Hence the official limit of 50 languages.

If a Sysop exceeds the limit on the number of languages, then BBSMSX would
report:

Too many options (starting at "X3OXXX")
or too many languages in XXOOOXXXX.MSG.

DEV-54 Galacticomm

Creating CNF Options
ONF options affect many aspects of the operation of The Major BBS. See the
System Operations Manual. CNF options are are stored in .MSG files,
converted to .MCV files, and read in, as needed, using a very quick direct
indexed scheme. CNF options help in these ways:

o The Sysop who isn’t a programmer can change numerous values,

names, options, prompts, and messages that affect the
operation of the BBS.

o A large volume of text is stored on disk, saving memory.
As a developer, you can specify your own CNF options in .MSG files. These
are converted into a special form for use by The Major BBS at runtime --
the .MCV files. These sections will help you treate new CNF options, and
use them in The Major BBS.
The Major BBS Configuration Facility, CNF, requires special formatting
information about each CNF option in the .MSG files. When the system
operator uses CNF to change the value of a CNF option, then this information
is used to make his job easier.
CNF type "text" options can be specified in different languages. The first
line of an .MSG file defines the languages that may appear throughout the
file, in this format:

LANGUAGE {<language 0>},{<language 1>},{<language 2>} ...
For example:

LANGUAGE {English/ANSI],{Spanish/ANSI},{French/ANSI}

Language 0 is always English/ANSI. Omitting the LANGUAGE{} pseudo-option is
equivalent to including the line:

LANGUAGE {English/ANSI}

CNF options can be specified at different levels:
LEVELL Hardware Setup options
LEVEL3 Security and Accounting options
LEVEL4 Configuration options
LEVEL6 Editable Text Blocks

The levels are numbered to correspond with the numeric selections from the
introductory menu.

Developer’s Guide DEV-55

Other special-purpose levels:

LEVELS

LEVEL30
LEVEL31

LEVEL45

LEVEL96
LEVEL97
LEVELS98

LEVEL99

Full Screen Editor help messages

N
\ Reserved for configuring the 16 databases of
/ The Major Database

/

Reserved for configuration options of the Major Gateway/
Internet Add-on Option

Reserved for options in the Entertainment Teleconference that
cannot be edited by CNF, including "action" specifications

Reserved for text that Sysops are not expected to want to view
or modify using CNF

Reserved for Full Screen Data Entry templates (which are not
editable by CNF)

The .MSG files have the following format:

LANGUAGE {<language 0>}, {<language 1>},{<language 2>} ...

LEVEL1 {}

<option
<option

specifier>
specifier>

LEVEL3 {}

<option
<option

specifier>
specifier>

LEVEL4 {}

<option
<option

specifier>
specifier>

LEVEL6 {}

<option
<option

Each section
specifiers.

specifier>
specifier>

at any level may contain from zero up to any number of option
The "LEVELn {}" may be omitted for any section that contains

no option specifiers.

Each <option

specifier> has the following format:

<help paragraph> <option name> <version list» <hinge> <coding>

<help paragraph> Up to 12 lines of text describing the CNF option.

DEV-56

This message appears on the CNF screen when the
operator is in HELP mode. You should only use
columns 2 through 60 of these 12 lines to give the
paragraph the proper appearance on the CNF screen.
(For best appearance, if you use less than 12 lines,
add a blank line before the line with the option
name. If you use all 12 lines, use no blank line.)

Galacticomm

<option name>

<version list>

<version n>»

<contents>

<hinge>

Developer’s Guide

The <help paragraph> may be omitted. In that case,
leave two blank lines in its place.

One to eight characters (capital letters or numbers).
This same symbol will be used in the "C" language
source code to refer to this CNF option. This is
done with the .H file that BBSMSX generates.

The text of the option, perhaps with versions in
multiple languages (for type "T" options only). There
is always a version for language 0. Rll other
languages may or may not have versions. Of course,
there can’t be more versions than there are languages,
as defined by the LANGUAGE{} line at the start of the
file.

In a 4-language file, here are the possibilities for
encoding the 4 different versions:

{<version 0>}

{<version 0>},{<version 1>}

{<version 0>),{<version 1>},{<version 2>}

{<version 0>}, ,{<version 2>}

{<version 0>},{<version 1>},(<version 2>},{<version 3>}
{<version 0»},,{<version 2>}, {<version 3>}

(<version 0>}, {<version 1>}, {(<version 3>}

(<version 0»),,,(<version 3>}

Notice that empty and missing are not the same

thing. An empty option has nothing between the curly
braces, but a missing option has no curly braces.

See about language subsets in the System

Operations Manual.

only type "T" options can have multiple versions in
multiple languages. Other types of options always
have exactly one versicn.

This is a string of characters that are available
to The Major BBS at runtime. This, and the option
name is the only information that BBSMSX takes from
the .MSG file to create the runtime .MCV file.

In the .MSG files:

"}" ig represented as ""}"
"“n jg represented as """

The number of characters in each version is limited
by the offline Configuration opticn OUTBSZ, which may
be set to 4096, 8192 or 16384.

The <version 0> text for options of all types except
type "T" is the <contents> of the option: what's
between the curly braces.

The hinge is an optional field that implies that
a particular option "hinges" on another option.
This mechanism is used to avoid contradictory
combinations of options from appearing on the

DEV-57

CNF screen. You can use it to hide one option
based upon the value of a preceding option. See
page 62 for more details.

<coding> This information is used by the CNF utility to
control the format and limitations on the option
contents.

There are examples of CNF options on page 63. Also look in the .MSG
files.

Option Coding Syntax

C Character, ' ' through '™’

B Binary ("YES" or "NO")

E <vl> <v2> ... <vm> Enumerated (multiple choice)

N <min> <max> Decimal numeric (%d)

L <min> <max> Large decimal numeric (%1d)

H <min> <max> Hexadecimal numeric (%x)

S <length> <descript> String of characters (%s)

T <description> Text (up to OUTBSZ-1 characters)

Type C: Character Configquration Options

The format of the <contents> for this type of option is:
<description> <character>

Where <character> is a single character, as for a menu selection,
and <description> is a short description, for example:

This is the activation code letter for calibrating
uplink #3

UPSEL3 {Select character for uplink 3: G} C

Type B: Binary Confiquration Options

The format of the <contents> for this type of option is:
<description> YES
or
<description> NO
Where <description> is a short description, for example:
Answer YES to this question if you want
new users to be able to play in the
games. Answer NO to allow them to
watch, but not play.
NEWGAM {Allow new users to play games? NO} B

The YES or NO choices will show up as softkey selections under CNF.

DEV-58 Galacticomm

Type E: Enumerated Confiquration Options

The format of the <contents> for this type of option is:
<description> <choice>

Where <choice> is a one-word selection among a small set of possible

answers. <description> is a short description. The set of possible

answers is enumerated in the <coding>, for example:

How rough do you want users to be
able to play?

EASY -- nobody loses too much
NORMAL -- can lose your shirt
ROUGH -- users can cheat
BRAWL -- cheaters can be shot
PLALVL {Play difficulty: ROUGH} E EASY NORMAL ROUGH BRAWL
These four enumerated <choice>’s will show up as softkey selections
under CNF.

Type N: Numeric Configuration Options

The format of the <contents> for this type of option is:
<description> <number>

®here <number> is a 16-bit integer between -32768 and 32767. A
smaller set of limits may be specified in the <coding>, for example:

How many seconds should we
wait for a user's bet before
skipping him for the round?

PLWAIT {Wait for how many seconds? 30} N 5 3600

In this case, 5 and 3600 are the "permanent" inclusive limits on
the value of the <number>. The operator, using CNF, can change
the value of this option to something other than 30, but not to
something outside of the range 5 to 3600. If you don’'t want any
particular limits on a option, then you may specify "N -32768
32767

Developer’s Guide DEV-59

Type L: Large Numeric Confiquration Options

The format of the <contents> for this type of option is:
<description> <number>

just like for type N options, except that this <number> will be

stored as a 32-bit integer. Limits are specified in the <coding>,

for example:

How much should we allow a user
to bet during one round?

MAXBET {Maximum bet: 1000000} L 0 100000000
In this case, the value of the option is one million. The
operator, using CNF, will not be able to make it larger than a
hundred million. If you wish to have no particular limit on the
option, you may code "L -2147483648 2147483647".

Type H: Hexadecimal Numeric Confiquration Options

The format of the <contents> for this type of option is:
<description> <hexadecimal number>

The <hexadecimal number> is unsigned, and may be between 0 and FFFF.
Smaller limitations may be encoded in the <coding>, for example:

What channel would you like to reserve
for your satellite uplink?

SATCHN {Channel for satellite uplink: 3F} H 0 3F

Type S: String Confiquration Options

The <ccntents> for this type of option are the value of the
string. The maximum length and description of the string are
encoded in the <coding>, for example:

This string is the sign-on message for initiating

uplink using the 227.85-228.05 MHz "APLINK" band,

including your FCC registration number

UPSIGN {US05 Westar 7::88A,5932-051} S 30 Uplink sign-on command
This would appear on the CNF screen something like this:

UPSIGN Uplink sign-on command U905 Westar 7::884,5932-051

If you use 0 as the length of the string, the maximum length will
end up being used, as limited by the width of the CNF screen.
Note: A longer <description> means a shorter <contents> length.

DEV-60 Galacticomm

Type T: Text Configquration Options

The <version n> text for this type of CNF option may consist of up
to OUTBSZ-1 characters.

BBSDRAW, the default editor for all "/ANSI" languages, can edit an
image of up to 25 lines of 79 characters each. If you use all 25
lines, then the last line cannot end with a line terminator (i.e.
no more than 24 line terminators may be in the <version n>). The
<coding> field specifies a short description for the option, for
example:

UPCOMP {
Uplink established, at %s on %s

% BEGINNING UPLINK TRANSMISSION #***
} T Uplink established notification

Type T options are the most numerous. Almost all user prompts and
messages are among the Editable Text Blocks, and are type T
options.

If Sysops change the sequence of %-symbols in a type-T option, CNF
will warn them about the consequences. Even so, The Major BBS tends
to be tolerant of "%s" symbols that show up where they don’t belong.
In case of emergency, the BBS will try to convert the %s symbols
into one of these strings:

<null pointer> The pointer is NULL (all 4 bytes are zero)

<invalid pointer> The pointer does not contain a valid selector,
or the offset is tooc big for the selector

This may not always work, and it is possible that a misplaced %s
will cause messy characters to show up on the user’s terminal, or
worse, the BBS could crash with a GP (general protection fault) when
prfmeg() tries to use the pointer.

Developer’s Guide DEV-61

Hinge Specification

This feature keeps CNF from showing one option based upon the value of a
preceding option. For example:

NEWGAM {Allow new users to play? NO} B
CHGGAM {Charge new users how much to play? 1000} N 0 32767

This combination of option settings does not make sense. How can you charge
new users for playing if you never allow them to play? If these options
were coded like this:

NEWGAM {Allow new users to play? NO} B
CHGGAM {Charge new users how much to play? 1000} (NEWGAM=YES) N 0 32767

then the second option would not even appear on the CNF screen, at least not
as long as the value of the NEWGAM option was NO. Change NEWGAM to YES and
CHGGAM appears.

CAUTION: The hinge feature has no effect on the contents of the
.MCV file, and thus no effect on the execution of The Major BBS.
Your programming on The Major BBS must specially handle a
situation such as the above to be sure that new users aren’t
charged for a game that they aren’t allowed to play, or anything
similar, where BBS operation would be out of sync with the CNF
option settings.

You can also use the hinge specification to test for a set of values, for
example:

(SATLINK=KBAND, QBAND, ZBAND)

This hinge will activate an option when the SATLINK option is either
KBAND, QBAND, or ZBAND. On the other hand:

(GEOSYNC#90,105,120)

will activate an option when the GEOLINK option is neither 90, 105, nor
120.

You probably will not want to hinge on the value of a 'T’' option. Any option
that does so will always be inactive.

DEV-62 Galacticomm

Examples
Here's an example of an option specifier:

If you want users to be able to change their date of birth,
answer this question with a YES. If only you, as the
Sysop, want to have the option of changing a user's date
of birth after he or she signs up, answer this gquestion
With a NO. You can always change the date of birth from
the User Account Detail screen

CHGBDY (Allow users to change their date of birth? NO) (ASKBDY=YES) B

This option is named CHGBDY. It has six lines to its help message. (These
appear while CNF is in help mode, per the <FI> key). This is a B-type
option, which is a YES or NO option. It's current value is NO. It is hinged
on the option named ASKBDY. CHGBDY appears only if ASKBDY is set to YES.

Here’s another example of an option specifier in an .MSG file:

GREET (Hello},{Hola},{Bonjour} T Greetings for a user

This GREET{} option has no help text. It has three versions for languages 0,
1 and 2. Here are more examples, with other languages missing:

language 0 language 1 language 2

GREET {Hello} Hello Hello Hello
GREET {Hello}, {Hola} Hello Hola Hello
GREET {Hello}, {Hola}, {Bonjour} Hello Hola Bonjour
GREET {Hello},, {Bonjour} Hello Hello Bonjour

The first and last examples omit the Spanish (language 1) versions of
GREET{}, so Spanish language callers will revert to the English version
"Hello" (which is language 0). The last two examples omit the French
(language 2) version of GREET{}.

A friendly reminder:

GREET , {Hola}, {Bonjour} *%x Not allowed! It's never ***
%% legal to omit language 0. *

Developer’s Guide DEV-63

Compiling CNF Options

The Major BBS makes sure it has all the .MCV files it needs to run by
running BBSMSX with no arguments (this happens in BBS.BAT). That checks all
.MSG files and makes .MCV files out of them if their time and date disagree.
(After BBSMSX makes an .MCV file, its time and date are identical to that of
the corresponding .MSG file.) That's fine, but if you insert or delete CNF
options, you need a new .H file in the source directory. That should be
taken care of with your .MAK file, or by specific steps in your development
process (page 21).

1f you’re ever in doubt, here’s how to run BBSMSX in a development
environment:

CD \BBSV6
BBSMSX <filename> -OSRC

where <filename>.MSG is the name of your editable .MSG file. This puts
the .MCV file into \BBSV6 and the .H file in \BBSV6\SRC where it can be used
to compile the software that uses the options. (Of course, if you're
putting your source code in a separate directory, you’ll need "-ODDD" or
something.)
BBSMSX has these alternative command syntaxes:

BBSMSX [-O<source directory prefix>]

BBSMSX @<list file> [-O<source directory prefix>]

BBSMSX <root filename> [-O<source directory prefix>]

BBSMSX <MSG file path> <MCV file path> <H file path>

The last syntax gives you complete control over what the files are named and
where they go.

DEV-64 Galacticomm

Using CNF Options

Files with .MCV extension contain the values of the CNF option for use at
runtime. The Major BBS reads from these files at runtime to get the
values of the options. Your source code can refer to the options by the
<option name> that you used in your .MSG file, as specified on page 57.
To do this, your source file will need to include the header file in your
source file using the C language "#include" directive.

The symbols defined in this header file are often used for more than just
referring to CNF options -- they also keep track of user substate. See
page 33 for more on this.

prfmsg(msgnum,pl,p2,...,pn); like prf, but the control string
comes from an .MCV file

int msgnum; message number within current .MCV
file

o B o PRRGIEER) o o just like printf()’s parameters

(except no "longs" or "floats")

This function is just like prf() (page 69), in that the formatted text output
goes into the prfbuf. However, with prfmsg(), the control string comes from a
CNF text block. Be sure to call setmbk() to identify the appropriate .MCV
file that the text block should come from before calling prfmsg() (more

on setmbk() below). The global variable clingo defines the language that
prfmsg() will read (page 53).

prfmsg() is used far more often than prf() for two reasons: (1) memory is
saved by storing the text on disk, and (2) the Sysop can change the control
string using CNF in offline Text Block Editing. Like prf(), there is no
limit to the number of parameters (pl,p2,...,pn).

It’'s fine to use prfmsg() in cases where you're formatting text for the
current user. When you’'re formatting text for another online user however,
you need to consider what language that user has selected. Remember clingo is
the language of the current user, and all primsg() calls depend on clingo.

See page 70 for more about prfmsg()’s multilingual cousin, prfmlt().

The library PHGCOMM.LIB (and the source file MSGUTL.C, which is available
with the Extended C Source Suite) has several utility routines for reading
and processing CNF options from these .MCV files.

inimsg(maxsiz) initialize the message buffer
unsigned maxsiz; maximum number of bytes in any option

You’ll only have to use inimsg() if you're writing an offline utility that
reads .MCV files. Set maxsiz to 16384 if you need to be sure you're
compatible with any .MCV file used on The Major BES.

mbkptr=opnmsg(mcvfil); open a new MCV file
FILE *mbkptr; Mcv file identifier
char *mcvfil; filespec of MCV file ("xxxx.MCV")

This routine opens a file of CNF options for reading. An array of pointers
is read in at this time so that when it comes time to read the actual
value of an option from disk, access time is minimal.

Developer’s Guide DEV-65

MCV File Identifiers

The return value of opnmsg() is a pointer to type FILE. The value
identifies a specific .MCV file -- a file containing CNF options.
You should only need to use this value when you call the routines
setmbk () and clsmsg(). The same type of value is -also stored in the
global variable curmbk (see below).

setmbk (mbkptr); set "current" MCV file block ptr
FILE *mbkptr; MCV file identifier (from opnmsg())

This important routine identifies the .MCV file to be used in subsequent
calls to getmsg() or to prfmsg() (see above). Fhen a file is opened, an
implicit setmbk() takes place. See the above note on .MCV File Identifiers.

A common programming mistake is to forget to use setmbk() at the beginning
of a series of prfmsg()’s. This can lead to a program that appears to work
when you test it with one user, but fails with multiple users. The symptoms
are usually quite obvious: messages are total nonsense, or you get a

fatal error like "RAWMSG: MSG NO. <nn> OUT OF RANGE IN <filename>".

rstmbk(); restore previous MCV file block ptr
from before last setmbk() call

A typical usage of rstmbk():

setmbk (fbkmb) ;
prfmsg (AUXBEEP) ;
rstmbk();

Calls to setmbk() and rstmbk() can be nested up to 10 levels deep.

extern FILE *curmbk; get the current MCV file identifier

This global variable contains the current MCV file identifier (see above) that
was last set by opnmsg() or setmbk().

There is an alias for curmbk, called lclmbk, that allows you to get at the
internal .MCV structure. 1It’s the identical variable as curmbk, but recast to
(struct msgblk *). For example, lclmbk->filnam is the name of the .MCV file.
See \BBSV6\SRC\MSGUTL.H for details. To use lclmbk, include MSGUTL.H in your
C source file.

bufadr=getmsg(msgnum) ; read value of CNF option
char *bufadr; address of buffer with retrieved text
int msgnum; message number (use option name from

the .H file)

This routine retrieves a CNF option into a buffer, and returns a pointer to
the buffer. The same buffer is always used for option contents (and hence

the same pointer is always returned by getmsg()), so you must finish using

these contents before you execute another getmsg(), prfmsg(), rawmsg(), or

getasc() call.

The "msgnum" parameter is the sequential number of the option within the
-MCV file. 1In your source code, you can use the name of the option here.
Your source file should include the appropriate header file using the
"#include" directive. The .H header file was generated from the .MSG file
by the BBSMSX utility.

DEV-66 Galacticomm

getmsg() is called indirectly by prfmsg() (see page 65) for the most
common usage of CNF options: user prompts and messages. These CNF options
are type T. getmsg() does translate embedded text variables (page 73).

bufadr=getasc(msgnunm) ; read value of CNF option
char *bufadr; address of buffer with retrieved text
int msgnunm; message number (use option name)

This variation on getmsg() returns text blocks with ASCII compatible line
terminators (both CR and LF are on every line -- getmsg() uses an internal
line terminator format where CR is a hard return, and LF is a soft return).
getasc() does not interpret text variables (page 73).

bufadr=raumsg(msgnum) ; read value of CNF option
char *bufadr; address of buffer with retrieved text
int msgnum; message number (use option name)

This variation of getmsg() reads in the raw text from the .MCV file. Text
variables, if any, are not translated, and the internal line termination
scheme is used (CR = hard return or paragraph boundary, and LF = soft
return).

clsmsg(mbkptr) ; close an MCV file
FILE *mbkptr; file identifier (from opnmsg())

This routine closes a CNF option file and deallocates the special structures
allocated by opnmsg().

The following routines are used for reading in the values of CNF options
other than of type T (text). To save time, these routines are usually
called during initialization, and their values are stored in memory. This
means that The Major BBES need not do a disk read every time it needs the
value of the CNF option.

val=numopt (nsgnum, floor,ceil) get numeric option from MCV file
int val; value of option

int msgnum; message number (use option name)
int floor,ceil; Inclusive limits on the value

This function gets the value of a type N CNF option. If the value
read from the file does not conform to the inclusive limits specified by
"floor" and "ceil", then The Major BBS reports a "catastro" error message.

1lval=lngopt (msgnum, floor,ceil) get large numeric option from MCV
long 1lval; value of option

int msgnum; message number (use option name)
long floor,ceil; Inclusive limits on the value

This function gets the value of a type L CNF option. If the value
read from the file does not conform to the inclusive limits specified by
"floor" and "ceil", then The Major BBS reports a "catastro" error message.

Developer’s Guide DEV-67

hval=hexopt (msgnum, floor,ceil) get hex option from MCV file

unsigned hval; value of option
int msgnum; message number (use opticn name)
unsigned floor,ceil; Inclusive limits on the value

This function gets the value of a type H CNF option. If the value
read from the file does not conform to the inclusive limits specified by
"floor" and "ceil", then The Major BBS reports a "catastro" error message.

flag=ynopt (msgnum) get yes/no option from MCV file
int flag; 1 if var started with "Y", 0 if not
int msgnum; message number (use option name)

This function reads in a YES or NO CNF option (type B).

ch=chropt (msgnum) get single-character from MCV file
char ch; the character
int msgnum; message number (use option name)

This function reads in a type C CNF option.

string=stgopt (msgnum) get a string from MCV file
char *string; pointer to newly allocated string
int msgnum; message number (use option name)

This function puts the contents of a type S CNF option into a newly
allocated string that is just big enough to held it. You could use free()
if you ever needed to deallocate the string.

index=tokopt (msgnum, tokenl, tokenZ, ,NULL) multiple choice option
int index; 1=tokenl, 2=token2, O=none

int msgnum;

char *tokenl;

char *token2;

This function checks a type E CNF option for one of several possible values.
If the last word in the option specified by msgnum matches tokenl, then
tokopt() returns 1, if token2, it returns 2, and so on. If the word matches
none in the token list, tokopt() returns O.

Don’t forget to terminate the token list with a NULL parameter.

Changing Confiquration Variables

If you understand the various roles of the .MSG, .MCV, and .H files you will
see that changing the contents of an option without changing the order of
the options has no effect on the .H file. This means that you do not need
to recompile The Major BBS every time you change a CNF option. The CNF
utility never changes option order. If you change the order of CNF

options, either by adding, deleting, or just rearranging them, you must
remember to regenerate the .H file (CNF does not do this -- use your .MAK
file or the BBSMSX utility, page 64), and recompile all the source code
that #include’s this header file.

DEV-68 Galacticomm

4. USER INTERFACE

User Output (prf(), prfmsg())

prf(ctlstg,pl,p2,...,pn); prfbuf-directed printf-lockalike
char *ctlstg; printf-like control string
PLPZ pwerery PG just like printf()’s parameters

(note: no "longs" or "floats")

This function has the same syntax as printf(). However, the formatted
output of prf{) goes into a global buffer pointed to by prfbuf. An internal
variable "prfptr" keeps track of where prf() should write into prfbuf:

prf() starts writing text at prfptr, terminates the text with a NUL ('\0'),
and leaves prfptr pointing to the NUL when done. This means that the output
of several prf()’s in sequence are concatenated together. outprf() is
commonly used to transmit the results of one or more prf()’s to a specific
user.

As with printf(), there is no limit to the number of parameters (pl,p2,...,
pn) than you may pass to prf(). They should correspond one-for-one with the
"g" directives in the control string, and you must be careful not to
overflow the prfbuf. (Use PFBSIZ for the size of prfbuf, but it’s not a
constant. PFBSIZ is computed to be the same as the offline Configuration
option OUTBSZ and is set by iniprf() at initialization time.)

See page 141 for the coding of ANSI directives that you can transmit to user
screens. For example, you could use:

prf("\33[37;44;0nFiberlink 92 to Munich is condition \33[32;1mGREEN!");

This sends a message that starts out white on blue and ends up flashing
bright green on blue.

See also page 65 about prfmsg(), the variation of prf() that reads text

from an .MCV file. (prfmsg() is used far more often in the BBS code.)
outprf (unum) ; send prfbuf to a channel & clear
int unum; user number

This function transmits the contents of the prfbuf buffer to a specific
user. When unum is anything other than usrnum, you should probably use
outmlt() (page 70). The "prfptr" variable mentioned above is reset to the
beginning of prfbuf. This means that several outprf()’s can be used to
transmit the same text to different users, as long as no prf()’s intervene.
But the next prf() will start at the beginning of prfbuf again.

Developer’s Guide DEV-69

clrprf(); clear the prf buffer indep of outprf

This function resets the "prfptr" mentioned above to point to the beginning
of prfbuf and stores a '\0’ there.

char *prfbuf; output buffer of prf() and prfmsg()

This is the variable mentioned above that points to the buffer where user
output is formatted. The contents of that buffer are transmitted by
outprf() using the GSBL routine btuxmt().

char *prfptr; pointer to the current position
in prfbuf

This pointer is updated by prf() and prfmsg() to point to the end of the
formatted string in prfbuf. Both clrprf() and outprf() reset prfptr to the
beginning of prfbuf.

Multilingual User Output

To review, if you want to format text for the current user, you use the
prfmsg() and outprf() routines, remembering to call setmbk():

setmbk (appmb) ;
prfmsg(HOWAYA,usaptr->userid);
outprf(usrnum);

This code prepares to read from a specific .MCV file, reads the HOWAYA
message from it and formats it with the current user’s User-ID, and then
sends the formatted message to the current user. If there are multiple
versions of the HOWAYA text block for multiple languages, then the version
corresponding to the current user’s language will be read (or the most
appropriate alternate -- see about language subsets in the System
Operations Manual).

Things get a little tricky when you need to send a message to another user
who is also online. Let’s say your module had some scheme for pairing
users, and when both partners logged on you wanted to notify them. To tell
the first partner that the second partner had logged on you could code this:

if (onsys(partner (usaptr-»userid))) {
prfmsg (PNRHERE, usaptr->userid);
outprf(othusn);

}

PNRHERE says something like, "Your partner, %s, just logged on." The
problem is that the other user will get the message in the language of the
current user. To aveid this:
if (onsys(partner(usaptr-»userid))) {
prfmlt (PNRHERE,usaptr->userid);
outmlt (othusn);

DEV-70 Galacticomm

There are four routines that have multilingual "cousins":

Monolingual Multilingual
prfmsg() primlt()
pri() pmlt()
clrprf() clrmlt()
outprf() outmlt()

Each routine has the same parameters as its cousin. The critical routine is
outmlt(). It transmits formatted information to one user. That information
must have been formatted by prfmlt() or pmlt(), and not prfmsg() or prf().
By the same token, outprf() should not be outputting information formatted
by prfmlt() or pmlt(). (If you combine primsg() and outmlt() then
English/ANSI users will get text in the native language of the usrnum user,
and all other users will get nothing at all. If you combine prfmlt() and
outprf(), then all users will get the English/ANSI version.)

When clearing the formatted information, it would be nice to use clrprf() or
clrmlt () as appropriate, but you can always use clrmlt() if you’'re in doubt
(it does everything clrprf() does and more). clrmlt() is already called
before every sttrou(), stsrou(), lonrou(), or lofrou() entry point, and also
before every polling routine (page 50).

The monolingual routines are more efficient than the multilingual routines,
so you should always use monolingual if you know you are outputting to the
current user only. In most of Galacticomm’s software the vast majority of
text blocks go to the current user.

Whenever output goes to a user other than usrnum, the most convenient thing
to do is to use the multilingual suite of routines. In the above case, when
prfmlt() formats PNRHERE, it first checks what languages are represented
online (including that of the current user) and then for each one, formats a
version of PNRHERE for that language. There's actually a separate
prfbuf-type buffer (page 70) allocated for each language. Here's how to

get each buffer’s address and pointer:

ptrtile(prfbuffers,ilingo) the address of the prfbuf for language
ilingo
prfpointers[ilingo] the address within the ilingo’th

prfbuf where we're currently
formatting text.

The language 0 version goes in the first of the prfbuffers, which is prfbuf
itself. If anyone is online with language 1 selected, then the language 1
version goes in the prfbuffers buffer number 1, and so forth, from 0 to
nlingo-1. When formatting is done, then outmlt(othusn) sends the appropriate
version of the text to user number othusn.

There is some work wasted here, in formatting text for languages that will
never be sent to a user, but if you code multiple outmlt()'s, all those
languages will come in handy. To save that unnecessary processing here’s
another way:

if (onsys(partner (usaptr->userid))) {
clingo=extoff (othusn)->1lingo;
primsg(PNRHERE,,usaptr->userid);
outprf (othusn);
clingo=extptr->lingo;

}

Developer’s Guide DEV-71

Here we’ve just changed the global variable clingo to the other user’s
language temporarily. If you’re formatting text for only one other user, you
can always set clingo like this.

But both of these methods (prfmlt/outmlt and changing clingo) have an
important drawback -- they don’t reprompt the other user. The other user was
probably sitting at some prompt and it would be polite to show him that prompt
again, after your interrupting message.

Here's the best way to send a message to another user who is online and may
be using any service at all on the BBS:

got=injoth() inject a message to another user
(implicit inputs:
othusn ... channel # to inject to
prfbuf ... message to be injected)
int got; i=user got it O=user was busy

This routine is used to transmit an asynchronous message to a user. By
asynchronous, we mean a message that does not follow from the question-answer-
question-answer banter that normally goes on between each user and The Major
BBS. This message is an interruption. injoth() is used, for example, for:

the Teleconference "page" feature or the global "/p" command
the Sysop send-message function

notifying online users that they have received Electronic Mail
notifying users that credits have been posted to their account

0000

The message will not be injected if the recipient’s NOINJO flag (in
user[othusn]->flags) is set, as it is when he is downloading, in Sysop-chat
mode, or is otherwise unavailable. The value returned by injoth() indicates
whether or not this happened: 1l=user got the message; O=user did not get
the message.

Now here’s what we could do to tell both partners that the other is online:

if (onsys(partner(usaptr->userid))) {
prEmlt (PNRHERE,usaptr->userid);
if (injoth()) {
prmsg (PNRTOO, othuap->userid);
cutprf (usrnum) ;

}

PNRTOO says something like, "Your partner, %s, is already online." The
injoth() routine is compatible with both monolingual and multilingual
formatting methods. It does the equivalent of an outprf() or outmlt() as
appropriate to the othusn user.

You should probably always use prfmlt() or pmlt() to format the
text for injoth(), not prfmsg() or prf().

In the above example, prfmlt() generates the text for injoth(), but if
prfnsg() had been used it would inject the text in the clingo language only.

By the way, notice how we can get away with prfmsg()/outprf() to the current
user after using prfmlt()/injoth() on the other user? This does not
violate the rules of mixing monolingual and multilingual user output routines.

DEV-72 Galacticomm

Changing usrnum

One last point, if you ever change the value of usrnum, it's important to call
curusr(). Suppose you’'re temporarily changing the user number to "userno" for
some reason. Do it this way:

Right way Hrong way

int unsave; int unsave;
unsave=usrnum; unsave=usrnum;
curusr (userno); USINuUmM=UsSerno;
curusr (unsave) ; usrnum=unsave;

The curusr() routine sets up many global variables in tandem with the
new user number, like usrptr, usaptr, and extptr. It also sets clingo
to the new user’s language index.

CUrusr (newunum) ; Change to a different user number
int newunum; new user number, 0 to nterms-1

Defining Text Variables

See the System Operations Manual for The Major BBS, in the BBSDRAW chapter
about using text variables. Here we’ll tell you how to program your own
text variables. From a programming standpoint, a text variable is simply a
function that has a name and returns a string of arbitrary length. (The
length and justification issues arise when using the variable -- see
BBSDRAN.)

1. Code a routine that returns a peinter to a string. (You're
responsible for storing the string somewhere where it will be
available for immediate use. Just about any buffer except an
"automatic" (stack) array will do.) Example:

char *
tvar_nikei (void)

{
}

2. Register the routine, along with the text variable’s name,
using the register textvar() routine, as in:

return{l2as(nikeiaverage()));

register_textvar("NIKEI",tvar_nikei);

You can do this in your init xxx() initialization routine.
Now you can use the text variable "NIKEI" when creating menus
or text blocks.

Be careful about the context of using a text variable. Either you must code
the routine so that it will produce valid results no matter when it's
called, or you must be sure that when the Sysop uses the text variable in a
particular text block or menu that the routine will work. See the context
limitations on using some of the standard text variables in the System
Operations Manual.

Developer’s Guide DEV-73

User Input

on The Major BBS, each time a user types a string of characters and hits
<Enter>», a status 3 condition occurs on his channel. Whatever module is
in effect for that channel processes the input through the sttrou() entry
point for the module (see page 33).

The variables in this section are implicit inputs to the sttrou(), lonrou(),
and lofrou() entry point routines for a module.

int margc; number of words in user input line
char *margv(]; array of pointers to the words in

user’s input line (there are margc
of these pointers)

char *margn[); array of pointers to the ends
of the words (to the terminating
NUL’s)

These variables are initialized by the function parsin():

parsin(); parse input line (insert '\0' after
each word, compute margc and margv[])

The parsin() routine is always called before control is passed to your
module through the sttrou() entry peint. The user’s input line is "parsed"
into individual words, with the intervening spaces removed and ’\0’
terminators placed on each word. The global variable margc is the number of
words, and margv[] is an array of pointers to those words. Each word
contains no spaces and is terminated by NUL ('\0’). margc and margv([] work
very much like the C language argc and argv[] work for command line
parameters passed to the main() routine.

char input[]; user input line
int inplen; total length of the input line in bytes
rstrin(); restore parsed input line (undo

effects of parsin())

The rstrin() function restores the user’s input to its original form (the
NUL's are removed and the spaces restored), undoing the effects of parsin().
After calling rstrin(), you use the glcbal variable input[] to refer to the
user’s entire input line.

For example, if a user types in the line "RAIN IN SPAIN" followed by
<Enter>, then the sttrou() entry point of the current module is invoked
with:

margc is 3

margv[0] points to "RAIN"

margv[l] points to "IN"

margv[2] points to "SPAIN"
If you call rstrin(), then:

input[] contains "RAIN IN SPAIN"

DEV-74 Galacticomm

Profanity
int pfnlvl; "profanity level" of the input (0
means no profanity, 1 means mild,
3 means very profane)
This global variable is based on the user input line in input{]. It is

saturated at (it’s never more than) the value of the offline Configuration
option PFCEIL.

Echo
echon(); Turn echo on for this channel
To turn echo off for a channel, use:
btuech(usrnum,0) Turn echo off for this channel
Then use echon() to turn it on again. Don't use btuech(usrnum,l) to turn echo

on. To echo "secret characters", such as "****" during password entry, use
this routine:

echsec(c,width); Echo secretly
char c; character to echo with every keystroke
int width; maximum number of characters expected

Then call echon() to make things normal again. The convention is to use
"secchr" as the first parameter to echsec(). This is the setting of the
offline Configuraticn option SECCHR, which defaults to "*".

Command Concatenation

This feature has two purposes on The Major BBS. (1) It allows the Sysop to
define detailed subcommands within your online service. This comes up
during Menu Tree design when the Sysop types in command strings for module
pages that give users access your module. Look up module page design in
the System Operations Manual for some examples of these strings from the
standard modules of The Major BBS.

(2) Command concatenation allows an experienced user to type several
commands at once. For example "ERT." from a menu that offers "E" for E-mail
means: "E-mail / Read messages / To me / starting at the earliest message
number" .

From a programming perspective, the idea is to loop through the characters
and parameters of the user’s command. The global variable "nxtcmd" in
CNCUTL.C keeps track of what has already been interpreted from the user's
command -- it points to the rest of the command.

bgnenc() ; begin command concatenation
After calling bgncnc(), the command is unparsed (has spaces again, not

separate words), and prepared for interpretation using the command
concatenation utilities.

Developer’s Guide DEV-75

done=endcne() ; are we done with the user’s command?
int done; l=yes, done 0O=no, there’s more

After calling endenc(), the rest of the command is put back into input[] and
re-parsed (margc and margv[] are recomputed), just as if the user had typed
in the rest of the command starting from this point. If anything is left
from the command, this function returns false.

ch=morecnc(); is there any more command?
char ch; next character (’\0’ if none)

The morcnc() routine tells you if there are any more characters left in the
command. It first skips any leading blanks and returns the next nonblank
character. The character that is returned is NOT skipped. If you want to
use this character, then call cncchr().

The remaining utilities read a single parameter (character, number, etc.) from
the user’s command string.

ch=cncchr();
char ch;

n=cncint();
int n;

In=cnclon();
long 1n;

n=cnchex();
int n;

ptr=cncnum() ;
char *ptr;

wrd=cncwrd() ;
char *wrd;

uid=cncuid();
char *uid;

signam=cncsig();

char *signam;

expect a character from the user
the next character ('\0’ if none)
(converted to upper case)

expect an integer from the user
the integer (0 if none)

expect a long integer from the user
the long integer (OL if none)

expect a hexadecimal number
the number (0 if none)

expect a decimal number
with optional '-’' followed by
decimal digits (no conversion takes
place -- returns the ASCII string)

expect a space-delimited word
truncated if over 29 characters

expect a User-ID or Forum name
the User Id or Forum name

expect Forum name, with or without "/"
prefix. Always returns name with
the "/" prefix.

yesno=cncyesno() ; expect yes or no from the user
int yesno; 'Y'=yes, 'N’'=no

This routine translates the user’s keystrokes from their selected language
into 'Y’ and 'N’. Suppose this line were in the French language .MDF file:

Language Yes/No: OUI/NON

DEV-T76 Galacticomm

Then cncyesno() would work like this:

user inputs: cncyesno() returns
o]
oui
n
non
QUE?
y

MO Z 2 g

The cncyesno() routine returns the next character from the command (and
removes it from nxtcmd). This is also what cncchr() does. One difference:
the translation described above. Another difference: if the user enters
the entire word for yes or for no, then all of those characters are removed
from nxtemd too. But cncyesno() still only returns 'Y’ or ‘N’ in those
cases.

For cases when yes/no decisions are not made through encyesno(), you could use
lingyn():

yesno=lingyn(firstc); translate user’s yes/no into 'Y'/'N'

char yesno; ry’ if yes, 'N' if no, otherwise
toupper (firstc)

char firstc; first character of user’s response,

should be the first character of the
yes or no words in that user’s

language.
ilingo=cnclng(); expect a language name or language

pick from numbered list (1 to nlingo)
int ilingo; returns language index, 0 to nlingo-1,

or -l1=invalid name or number

cncall(); expect a variable-length word sequence
(consume all remaining input)

Example of Command Concatenation

User session:
<...menu...> Q
QUIZ!
What is the first letter of the alphabet? A
How many fingers do you see? 0
END OF QUIZ! You won!
<...menu...> QAO

END OF QUIZ! You won!

{eeoMENU. .02

Developer’s Guide DEV-77

Source code of user input handler entry point:

int
sttgiz(void)
{

int retcode=1;
do (
bgnene ()
switch (usrptr->substt) {
case O:
cncchr(); /* gobble the module select character */

prf("\nQUIZ!\n");

prf("what is the first letter of the alphabet? ");

usrptr->substt=1;

break;

case 1:

if (encchr() == 'A') {
prf("How many fingers do you see?\n");
usrptr->substt=2;

¥

else {
prf(*\nThat's wrong! You lose!\n");
cncall();
retcode=0;

b3

break;

case 2:

if (morcnc() && cncint() == 0) {
prf("\nEND OF QUIZ! You won!\nm\n");
cncall();
retcode=0;

else {
prf("\nThat's wrong! You losel\n");
cncall();
retcode=0;
¥
break;
3
) while (lendcnc());
outprf(usrnum);
return(retcode);
3}

We've used prf()’s here instead of prfmsg()’s just to keep the example
simple. In practice we’'d probably use prfmsg()’s and put all this text into
a .MSG file. See page 55.

Exiting to the Parent Menu, or to your Module’s Menu

condex(); conditional exit to parent menu for
after handling concatenated commands

This routine can be used to return the user to the parent menu after the
servicing of a string of concatenated commands that either came from the
Sysop's module command string or from what the user typed.

To help handle these kind of situations, you may be able to make use of the
CONCEX flag to give you fair warning of what condex() will do. Whenever a
user enters a module from a Menu Tree menu, the (usrptr->flags&CONCEX) flag
is:

Set if the EXICNC configuration option is set to YES and the user
concatenated two or more command characters together; or

Cleared if EXICNC is NO or if he typed a single character.

The flag remains set (or cleared) throughout the user’'s activities in the
module.

DEV-78 Galacticomm

Now here'’s how you should use condex(): When your code would normally
return the user to your module’s internal menu (but not normally to the
parent Menu Tree menu), then you can call condex(), to conditionally exit

to the Menu Tree menu at that point. (By the way, condex() tests the CONCEX
flag and does nothing if it is not set.) For example, you could code:

if (usrptr->£lags&CONCEX) {
primsg(X2MAIN) ;
condex();

}

Now, the result (if any) of condex() is identical to the result of exiting
from your module’s sttrou() entry point while returning zero. The big
difference is that you can call condex() anywhere, perhaps deep from some
routine in your code, and the exit is taken immediately -- you will never
"return" from condex(), if it takes any action at all. This feature is
implemented using the setjmp() / longjmp() feature in the compiler library.
See ESGUTL.C for a coding example.

User-ID Cross Referencing

When writing an Electronic Mail message, users can type in part of a User-ID
and the BBS will present them with all User-IDs that resemble it. The user
can type in a more exact User-ID, or just pick one of the alternatives by
number .

To use this feature in your own program when you need the user to
type in a User-ID, use the hdluid() routine:

rc=hdluid(string); Find User-IDs that resemble a string
int re; see below
char *string;

Return Codes

UIDFND User-ID found, by exact match (case is unimportant), or
picked by number. You should get the User-ID from
uidxrf.userid, not from the string you passed to hdluid().
That string, even if it is an exact match, probably doesn’t
have the right case. And it could always be a number if the
user ended up picking the User-ID from a list.

UIDPMT More than one possible match, or no matches at all.
You need to reprompt a short prompt asking for a User-ID.
You should be able to use the same prompt you did just before
you first called hdluid(). Then pass the string received
from the user to hdluid() again.

1f there were multiple possibilities, they've just been
listed out. It should be obviocus to the user in that case
that he can just type in a number.

UIDCAL Continue calling hdluid(), no prompting is necessary. The
user has just specified an incomplete User-ID, there’s only
one possible match, and now we’'re asking the user to confirm
yes-or-no.

Developer’s Guide DEV-79

Before you pass the string to hdluid() (which is usually the return value of
cncall()) you should check it for special values like ’'X’ for exit or 2’ for
help. You may be accommodating cther possible entries. Then as a last
resort, try hdluid().

If you get the return value UIDPMT or UIDCAL, then hdluid() expects to get
called again. If that doesn’t happen for some reason (the user typed ‘X' to
exit and you intercepted it), then be sure to call clexrf():

clrxrf(); Abandon User-ID cross-referencing

The text output of hdluid() is in the prfbuf -- your calling program must
do an outprf() eventually.

Default Selection Character

You can allow Sysops to configure the default response to your prompts by (1)
putting the default character at the end of the prompt, (2) using getdft()
just before you output the prompt, and (3) using chkdft() when you get the
reply.

Here’s an example of a text block with the default answer at the end:
ASKVOW {Pick a vowel: A} T Prompt asking for a vowel

This is a little misleading to Sysops in that we aren’t going to send the "a"
when we send the prompt. You could also do this:

ASKVOW {Pick a vowel (hit RETURN for "A"): A} T Prompt asking for a vowel

Here, if Sysops wanted to change the default to "E", they would need to
change two things:

ASKVOW {Pick a vowel (hit RETURN for "E"): E} T Prompt asking for a vowel

What you want your code to do is to use that final character before the "}"
curly brace to fill in for a user who doesn’t pick any character and just hits
<Enter>. Here are the tools:

dftchr=getdft(); Get the default character & remove it
from the output buffer
char dftchr;

chkdft(dftchr); Put the default character in the input
buffer, if user just hit <Enter>

You call getdft() after you have prfmsg()’d the prompt and you're about to
use outprf(usrnum) to send it to the user’s terminal. getdft() strips the
character out of the prfbuf buffer (so it never get'’s to the user’s terminal)
and returns it for you to hold onto. (You can also use the "final cursor
position" feature of BBSDRAW and getdft() will work properly.)

DEV-80 Galacticomm

The tricky part is that you need to save this default character between cycles
somehow. You get the character from getdft() when you send the prompt, but
you need to use it when the user gets around to typing in a reply.

Then after the reply comes in, chkdft() checks to see if the user hit just

<Entery> and if so, makes the input variables look as if he had typed the
character. Then your code can go about its business and parse the input.

User Status and Handling

ison=uinsys(usrid); determine if a user is online

int ison; true if user anywhere online

char *usrid; User-ID to be tested for

int uisusn; global variable, set to user number
when uinsys() returns 1

ison=onsys(usrid); determine if a user is online

int ison; true if user online & logged on

char *usrid; User-ID to be tested for

The differences between uinsys() and onsys() are:

1. onsys() only returns true if the user has already logged on.
uinsys() also catches that space of time between typing in
User-1D and password when we think the user is about to log
on.

2. uinsys() sets the global variable uisusn. onsys() sets
othusn, othusp, and othuap (see below).

isin=instat(usrid,gstate); see if a user is using a specific
module

int isin; true if user is in the module

char *usrid; User-ID to be tested for

int gstate; state (module number returned

by register medule())

If either instat() or onsys() return true, then the following global
variables are also set:

int othusn; the user number of the other user

struct user *othusp; pointer to structure for that user in the
user[] array (see MAJORBBS.H)

struct extusr *othexp; pointer to extendable in-memory structure
for that user (see extoff() on page 82)

struct usracc *othuap; pointer to structure for that user in the
"usracc" structure (see uacoff() on page 82)

These variables are analogous to usrnum, usrptr, and usaptr, see page 33.
To get the other users language index, use extoff(othusn)->lingo.

All of the above routines will return false, by the way, for a user with
Sysop privileges when he has selected "/invis" to become invisible. If you

Developer’s Guide DEV-81

need to penetrate the Sysop invisibility veil for some reason you could use
the following routines instead:

use onbbs(usrid,l) instead of wuinsys(usrid) (anywhere online)
use onsysn(usrid,l) instead of onsys(usrid) (logged on)
This might be necessary if you were trying to decide whether to modify a
user'’s account record in memory or on disk for example. There are several
examples of this in ACCOUNT.C and ACCSCN.C.
To reference the user account information of someone who is online, don’t

use the usracc[] array directly. Since that array might be larger than 64K,
you must use uvacoff():

uaptr=uacoff (unum) ; Get online user account info
struct usracc *uaptr; pointer to in-memory acct info
int unum; user number

And similarly with the extended in-memory array, use extoff():

exptr=extoff (unum); Get more online user info

struct extusr *exptr; pointer to extendable in-memory info
int unum; user number

int ripdfd; l=at least one /RIP language is

defined, or O=none

int ripidx; Index of the first /RIP language,
0 to nlingo-1, or nlingo if there
are no /RIP languages

hasrip=isripu(); Is this a /RIP user?

int hasrip; l=yes, 0O=no
hasrip=isripo(unum); Is that a /RIP user?

int hasrip; l=yes, 0O=no

int unum; user number, 0 to nterms-1

Be careful not to use isripu() unless you know the "clingo" variable is
available. For example, in an interrupt routine such as hpkrou() in
MAJORBBS.C, only isripo() should be used.

DEV-82 Galacticomm

Hanging up on a User

If you've decided, for whatever reason, to boot a user off of the BBS, call
byenow() :

byenow (msgnum,pl,p2,...,pn); say good-bye to a user and disconnect
(implicit input:
usrnum ... channel to hang up)

int msgnum; message number in current .MCV file
(don’t forget setmbk(), page 66)
TYPE pl,p2,...,pn; parameters if any (max 12 bytes)

This routine will make reasonably sure that your good-bye message gets
transmitted to his screen, and then his session will be terminated. You may
still get status codes after calling byenow(), but you can check the
usrptr->flagssBYEBYE flag to detect that situation. You will definitely get a
call to your huprou() entry point.

If you need to do this for a user other than the one you're servicing (other
than usrnum, that is), then you need to temporarily save usrnum and restore
it, as in:

usnsave=usrnum;
usrnum=othusn;
byencw (LASERCEPT) ;
usrnum=usnsave;

This would do the dirty work for the othusn user. Note that usrptr and
usaptr are not involved at this stage at all.

Developer’s Guide DEV-83

Intercepting User-Connect

You can intercept the moment that a user first connects to the BBS using the
(*hdlcon) () handle-connect vector.

void (*hdlcon)(); Handle-connect vector

When any channel, modem, serial, X.25 or LAN, is done establishing connection
with the user’s terminal, then the function pointed to by this vector gets
called. Here are the final events on the different types of channels that
occur before the (*hdlcon)() vector gets called:

Modem channel "CONNECT" received

Serial channel Any <CR>-terminated string received

X.25 channel X.3 programming complete (X.29 string sent)
IPX Direct channel Any <CR>-terminated string received

IPX Virtual channel Any packet received

SPX channel Connection established

The (*hdlcon)() vector starts out pointing to the gtansi() routine which is

an internal (static) function in MAJORBBS.C. Use (*hdlcon)() just like the
parasitic way in which you would use an interrupt vector: save its value

(the pointer to some old function), put a pointer to your own function in

its place, and then when your own function gets called, make sure to call

that function whose pointer you saved (unless you think of something better to
do). Here's a simple example:

void (*hcsave)(); /* save location for old handle-connect vector */
void
brblast(vecid); /* blast low-baud rate users on high channels */

{
if (usrnum >= 32 && usrptr->baud < 9600) {
setmbk (dddmbk) ;
byenow (OTHERBAUD) ;

rstmbk();
}
else {
{*hcsave) ();
}
}
void
install brblast(void); /* install baud-rate blaster */
{
hecsave=hdlcon;
hdlcon=brblast;
}

The brblast() routine hangs up on slow-modem callers on channels with user
number 32 and higher. The install brblast() routine should be called from
your init xxx() routine (exactly once, of course). It saves the current
pointer in the handle-connect vector, and puts a pointer to brblast() in its
place.

Now when anyone connects to the BBS, brblast() is called. If their user
number is 32 or greater and their baud rate is less than 9600, it sends some
goodbye message (politely saving and restoring the current .MCV file handle)
and prepares to hang up on the user. Otherwise, the user gets online like
normal.

DEV-84 Galacticomm

The connect handler that you install by this method is limited in what it
can do. Keep in mind that other modules might be intercepting the vector
too, and you really shouldn’t be depending on one to execute before the
other. And if you want a user to log on, you should relinquish complete
control and let the normal connect sequence proceed (in other words, call
the function whose pointer you saved).

If you want to take over connect-time processing for multiple status
conditions, then you’ll need to set up your own class, state and substate.
(Remember the three "context" variables described on page 317)

usrptr->class=BBSPRV;
usrptr->state=mystate;
usrptr->substt=CONTSTEPL;

1f you do this, then your sttrou() and stsrou() vectors will get called for
future events (such as the user entering a line of text or a status
condition on that channel). BBSPRV is a special class that allows your
module entry points to get called without deducting credits or limiting
inactivity, etc. -- you're on your own. The "mystate" variable is the
handle for your module (the return value of register module()). The substt
value CONSTEP1 is a local constant so you can distinguish this type of event
in your entry point routines.

When done, you can return control to the powers-that-be and continue with
the standard connect process by restoring usrptr->class and calling the
saved vector value:

usrptr->class=VACANT;
(*hcsave) ();

Notice that it’s important to resroc

Whatever a handle-connect routine does, you should be able to rely on it to
either set the usrptr-»>state code or call byenow(). (gtansi() does assume
you're still in the VACANT class in some cases.)

There are other moments in the connection process with vectors you can
intercept:

void (*hdlrng)(); Handle-RING-string vector

This routine can be used for auxiliary handling of the "RING" that comes in
on modem channels. The routine would get called on every "RING" before the
"CONNECT" message. The "RING" and any text that might follow it are available
by consulting margc and margv(].

void (*hdlnrg)(); Handle-non-RING-string vector
This vector is called when a string other than "RING" is received on a modem
channel that is awaiting an incoming call. The string is available by

consulting margc and margv(]. You might use this to handle strings other than
"RING" in scme special manner.

Developer’s Guide DEV-85

int (*hdlenc)(); Handle-CONNECT-string vector

This vector gets called on a modem channel when the first non-RING string is
received., The string is available by consulting margc and margv[]. Return
values are:

-1 Ignore the string
0 Reset the channel and get ready to receive another incoming call
1 Connecticn complete, the (*hdlcon)() vector will get called after
a short pause

You might intercept (*hdlcnc)() if you wanted to handle the parameters of
the "CONNECT" string in some special way, or if you were expecting
legitimate messages cther than "RING" or "CONNECT" to come in.

int (*hdlc25)(); Handle-X.25-connection vector

This vector gets called at the beginning of every X.25 call. You could
intercept it to process the parameters of the incoming X.25 call:

margv([0] "RING"

margv[l] Caller’s network address

margv[2] "CALLING"

margv[3] Callee’s network address (that of your BBS)

margv[4] (optionally) User data field (NUL-terminated string)

margv[4] will only be available if margc >= 5 and if you have set the x25udt
flag in advance (see the GSBL Reference Guide).

Looking through MAJORBBS.C, you may find that some of these vectors default
to pointing to a routine that does nothing at all. If you change the value
of one of these vectors, it is still good programming practice to call the

routine it originally pointed to from inside of your new routine.

Autosensor Routines

Add-on Options may hook into the autosensing phase of the BBS session -- the
very start when we probe the user’s terminal for signs of intelligent life.
If there are any autosensors active, the "Auto-sensing..." message appears
and then all autosensing routines are run in parallel on that channel.

Add-on Options can register autosensing routines to test for particular
features in each user’s terminal and vote on which languages or protocols he
should use. See the ansisns() routine in MAJORBBS.C for an example.

For another example, say that to automatically detect compatibility with the
ZEBRATerm terminal software you want to send out a "Z" immediately upon
connection, and then wait for a "!" reply. If the BBS gets the reply
within 1 second, it knows it’s talking to ZEBRATerm. But if it gets nothing
for 1 second, it assumes not.

DEV-86 Galacticomm

Here’s how such a ZEBRATerm autosensor might be coded:

int

zebratest(

unsigned snccon,

char *incbuf,

int nbytes)

{
if {snccon == 0) (

btuxmt(usrnum, "2");

3

else {
while (nbytes--) (
if (Yincbuf++ == '11) (
zebralusrnum] =1;
setbyprot ("/ZEBRA, 2);
return(1);

>

if (snccon >= 16)
zebra [usrnum] =0;
return(1);

b

return(0);
>

To register your autosensor routine, you need to call regautsns{) in your
initialization code, for example:

regautsns{zebratest);

The code for regautsns() and related routines can be found in AUTSNS.C.

when a user first connects to a BBS all autosensor routines are called
repeatedly. Each autosensor eventually returns 1 to indicate it is done,
and from that point is no longer called for that session. When all
autosensors are done, or 10 seconds elapse, whichever comes first, the
autosensing phase is over.

Each autosensor routine will be called with the same three parameters as in
the above zebraterm() example:

unsigned snccon count of 1/16 seconds since connection was
established with this channel -- the first
call is always zerc and each call after
that is steadily increasing (and nonzero)

char *incbuf buffer of incoming binary bytes on this
channel -- this same data is shared by all
autosensor routines

int nbytes number of bytes in incbuf

As you can see in the example, usrnum is an implicit input to the autosensor,
as well as usrptr and usaptr and other global session variables.

Your autosensor routine will need to return an "int" indicating whether the
autosensing is done for that channel.

autosensor return value l=done autosensing
0=still working on autosensing

Developer’s Guide DEV-87

You can count on the fact that the snccon parameter will be zero the very
first time your autosensor is called for a session, and always nonzero after
that for the same session. So use the (snccon == 0) case to initialize
things if you need to. In every call after that, snccon will be at least
one, even if it’s 0.000001 second later. 1In the above example, we transmit
the "Z" right off the bat and return 0 (0 because we know we’re not done
autosensing yet). Otherwise we check for incoming data.

This is a subtle but important point: autosensor routines should check for
incoming data before they check for a timeout. This way, if the BBS
happens to get tied up with the other channels for an unusually long period,
then when it finally does get around to servicing the autosensing channel,
it properly handles any data received in the interim. Suppose in the above
example that within such a delay of a second or more, a "!" reply did come
in. Then zebratest() gets called with both a timeout condition and data
available. Clearly the data available condition should take precedence (as
it does in this example).

After checking for incoming data, we take a glance at the watch. If our one
second’s up, we give up and assume that we’re not connected to ZEBRATerm.
Remember that other autosensor routines might be at work here so if we don't
understand the incoming data we have to ignore it.

This autosensor’s ultimate job, when it detects ZEBRATerm, will be to set
the zebra[] array element for each user to indicate 1=ZEBRATerm, O=not. It
will also "vote" for the languages that end in "/ZEBRA" with a confidence
factor of 3. We’ll take a closer look at what this voting business is all
about in the next section.

All autosensing is subjected to a 10-second master timeout, so if any
autosensor takes more than 10 seconds for any reason, the autosensing period
will end anyway. You can change this master timeout if you like by changing
the value of the global auswait variable:

unsigned auswait; master autosensing timeout, in 1/16
of a second (e.g. 160 = 10 seconds)

The healthiest way to change this is probably to be sure you only increase
it, as in:

auswait=max(auswait,240);

Just setting auswait=240 (15 seconds) might cause a problem for another
autosensor that needed the master timeout to be at least 320 (20 seconds).

Voting Confidence Factors

All languages start out with a confidence factor of 1. Any autosensor can
change the confidence factor of any language to any number between 0 and
100. The voting confidence factors for all languages and users is stored in
this 2D array:

char *poslng; pointer to a 2D array of voting confidence
factors (varies fastest by language, then
by user number, has nlingo*nterms total
number of elements)

DEV-88 Galacticomm

To set the voting confidence factor for the current user (usrnum) for the
language ilingo to 5, you would code:

poslng[usrnum*nlingo+ilingo]=5;

You could vote on all languages with the same terminal protocol suffix with:

setbyprot (suffix,value); set voting confidence factor by protocol
char *suffix; language name suffix
char value; voting confidence factor

This routine will find all languages with names that end in suffix and set
their voting confidence factor to value. See the example call to
setbyprot() in the zebratest() example, above.

At the end of the autosensing period, the language with the highest
confidence factor automatically becomes the language for that channel. If
there’s a tie, as is often the case, then what happens next depends on the
LANGOP offline Configuration option:

LANGOP=ASK - Display a numbered list of the languages that have the
highest confidence factor, and ask the user which one he
wants to use.

LANGOP=AUTO - Just go ahead and select one of the languages with the
highest confidence factor (it picks the language with
the lowest numbered index, but the Sysop can’t count on
which language that is, unless it’s English/ANSI)

The voting confidence factors are available throughout a user’s session. To
determine the top factor, call
numcand=cntcand() ; determine the maximum voting confidence
factor, among all the languages, and
how many languages have it
Here are the implicit return values of cntcand():
int maxcand; maximum voting confidence factor among the
languages
int numcand; l=one language is clearly the winner

>l=number of languages tied for first p
(numcand is a glcbal variable and it's
the return value of cntcand())

int fstcand; the winner, or the first language (lowe
index) that is tied for first place

lace
also

st

Developer’s Guide DEV-89

5. USER SERVICES

Security (Locks & Keys)

As explained in the System Operations Manual, security on The Major BBS is
primarily controlled by locks and keys. Apply locks to features and issue
keys to users. When a user requests to use a certain feature, find out if
he has a key with the same name as the lock on that feature. A feature

can have one or zero locks. A user can have a set of keys by virtue of the
class he’'s in (the class keyring), or by individual ownership.

Note that the question "Can Fred open the SAMPLE lock?" is identical to the
question "Does Fred have the SAMPLE key?"

Here is the most versatile routine for testing whether an online user has a
specific key or not:

ok=gen_haskey(lock,unum,uptr); Does this user have the key to this

lock?
int ok; l=yes, let him in 0O=no, deny access
char *lock; Name of lock on feature / key required
int unum; User number of online user
struct user *uptr; User structure pointer of online user

What follows are some handy variations and alternatives to gen haskey() that
you’ll probably use more often:

ok=hasmkey (msgnum) ; Does the user have the key specified
in this offline Security and
Accounting option?

int ok; l=yes, let him in O0=no, deny access

int msgnum; Number of the CNF option

This routine checks whether the current user has a key specified by the
Sysop in an offline Security and Accounting option. See page 55 for
creating CNF options. You could make an offline Security and Accounting
option that looks something like this key:

SAMPKY Key required to log on to reserved channels NORMAL

DEV-90 Galacticomm

Now the Sysop can change this option so that another key is required. All
you have to do is:

if (hasmkey(SAMPKY)) {
welcomemyfriend();
}

else {
sorrynocigar();
}

By convention, all CNF options pertaining to Security are stored in level 3
-- Security and Accounting. If you specify any locks of your own in offline
Security and Accounting options, we recommend that you try to use one of the
four pre-defined lock names for the default values of your option when you
can:

DEMO Everybody gets this key, it’s the only one new sign-ups get
NORMAL Approved users

SUPER Supervisors or trusted assistants

SYSOP Top-level access to the BBS

ok=haskey(lock); Does the user have this key?

int ok; l1=yes, let him in 0O=no, deny access
char *lock; Name of lock on feature / key required

This routine checks if the current user has the specified key. You might
store the string in memory with stgopt() and haskey() (instead of reading it
each time you need it with hasmkey()) for quicker response.

ok=othkey(lock); Does the other user have this key?
int ok; l=yes, let him in O=no, deny access
char *lock; Name of lock on feature / key required

This routine checks if the user specified by othusn (user number) and othusp
(pointer to user data structure) has a certain key. You can call this

routine right after you call instat(), onsys(), or onsysn() (see page 81).
ok=uidkey(uid, lock); Does the (offline) user have this key?
int ok; l=yes, let him in 0=no, deny access
char *uid; User-1D
char *lock; Name of lock on feature / key required

This routine checks on the access capabilities of a user who is not online at
the time.

ock=uhskey(uid, lock); Does the user have this key?

int ck; l=yes, let him in 0=no, deny access
char *uid; User-ID

char *lock; Name of lock on feature / key required

This routine is universal -- it will tell you if the user has this key, and it
will work whether the user is online or not.

Developer’s Guide DEV-91

Registerable Pseudo-Keys

You can create your own pseudo-keys for users. Say you want to give users
access to some feature based upcn something. The standard method of locks and
keys allows Sysops to make up key names and issue keys either directly to
individual users, or to classes of users via the class keyring. But some
situations require more flexibility. For example, the " PORT#xx" pseudo-key
implicitly gives each user a special key based upon the BBS channel number
they are using for their current session. Here’'s the corresponding pseudo-key
routine from MAJORBBS.C:

STATIC int

prtpsk{unum, Lock) /* validate the _PORT# pseudo-key my
int unum; /* user number, 0 to nterms-1 _y
char *lock; /* lock name that the key is for */
{

int chn;

sscanf (lock, "_PORT#¥%x" &chn);
return(channel [unum] == chn);

and here’s how it gets registered:

register pseudok(prefix,rouputr); Register a pseudo-key routine
char *prefix; prefix of the pseudo-key

int (*rouptr)(unum,lock); pointer to handler routine
int unum; user number being checked
char *lock; full name of the key required

For example:

register_pseudok("_PORT#",prtpsk);

The registration call says in effect "If anyone asks about users having a key
that starts with ' PORT#’, then let me make the determination". Now suppose
there’s some code somewhere like this:

haskey("_PORT#2C");

Then prtpsk() swings into action and determines whether this user happens to
be on BBS channel 2C hexadecimal or not.

See MAJORBBS.C for the other pseudo-key routines for channel group number,
spoken language, and terminal protocol.

By convention, and for Sysop sanity, all pseudo-keys start with the " "
underscore character, but nothing enforces this.

DEV-92 Galacticomm

Accounting (credits)

User connect time can be controlled or measured with the system commodity
called "credits". Credits typically refer to seconds of privileged connect
time: If an "approved" user is online for an hour he consumes 3600 credits.
A new user doesn’t consume credits and can’t access many of the features of
the system.

There are many other ways credits are used. Certain actions "cost" the user
a fixed amount of credits. And credit consumption can vary depending on what
service the user is in.

Charging Users
To charge a user credits, you can make use of the dedcrd() and tstcrd()

routines in ACCOUNT.C:

Subtracts HWill auto-

Credit credits matically
testing if user is "borrow"
and Actually "Exempt" credits if
charging deducts from credit user can go
routines credits? charges? into debt? User

* [dedcrd() YES NO YES current
rdedcrd() YES YES NO current
odedcrd() YES optional optional any online
ndedcrd() YES optional optional any offline
ldedcrd() YES opticnal optional any

* | gdedcrd() YES optional optional any

* | tsterd() NO NO YES current
rtsterd() NO YES NO current
otsterd() NO optional optional any online
ntsterd() NO optional opticnal any offline
ltsterd() NO optional opticnal any

* | gtsterd() NO optional opticnal any

* = routines you're most likely to want to use

All of the dedcrd() routines return 1 if sufficient credits were available,
or 0 if there weren’t enough. The last parameter, "asmuch", decides what to
do if there weren't enough: l=take whatever the user has, reducing his
balance to the minimum, or O=don’t take anything.

The tstcrd() routines act just like the corresponding dedcrd() routines,
except that no credits are actually deducted. Use the tstcrd() routines if
you need to specially handle the case of insufficient credits before any are
deducted (for example by exiting a service or issuing a warning).

Developer’s Guide DEV-93

enuf=dedcrd(amount ,asmuch) ;
int enuf;

long amount;

int asmuch;

enuf=rdedcrd(amount,asmuch) ;
int enuf;

long amount;

int asmuch;

Deduct credits from current user’s acct
1=had enough, O=didn’t
number of credits to deduct
if not enough: 1=take all, O=none

Deduct real credits from online acct
1=had enough, O=didn’t
number of credits to deduct
if not enough: 1=take all, O=none

enuf=odedcrd (unum, amount,real,asmuch);

int enuf;
int unum;
long amount;
int real;
int asmuch;

Deduct credits from an online account
1=had enough, 0=didn’t
user number
number of credits to deduct
l=don’t put into debt
if not enough: 1l=take all, O=none

enuf=ndedcrd(userid,amount,real,asmuch);

int enuf;
char *userid;
long amount;
int real;

int asmuch;

Deduct credits from an offline account
1=had enough, 0O=didn’t
User-ID
number of credits to deduct
l=don’t put into debt
if not enocugh: 1l=take all, O=none

enuf=1dedcrd(uptr,amount,real,asmuch);

int enuf;

struct usracc *uptr;
long amount;

int real;

int asmuch;

Deduct credits from an "active" user
account structure residing in memory
1=had enough, 0=didn’t
pointer to active user structure
number of credits to deduct
l=don't put into debt
if not enough: 1=take all, O=none

enuf=gdedcrd(userid,amount ,real,asmuch);

int enuf;
char *userid;
long amount;
int real;

int asmuch;

DEV-94

Deduct credits from any user’s account
1=had enough, 0=didn’t
User-ID
number of credits to deduct
l1=don’'t put into debt
if not enough: 1=take all, O=none

Galacticomm

enuf=tstcrd(amount); Test if user has enough credits

int enuf; 1=had enough, O=didn’t

long amount; number of credits (don’t deduct)

enuf=rtstcrd(amount); Test if user has enough real credits

int enuf; 1=had enough, 0=didn’t

long amount; number of credits (don’t deduct)
(won't take debt or exemptions into
account)

enuf=otstcrd(unum,amount,real); Test if user has enough credits

int enuf; 1=had enough, 0O=didn’t

int unum; user number

long amount; number of credits (don’t deduct)

int real; l=don’t take debt or exemptions into
account

enuf=ntstcrd(userid,amount,real);
Test if offline user has enough credits

int enuf; l=had enough, 0=didn’t

char *userid; User-ID

long amount; number of credits (don’t deduct)

int real; l=don’t take debt or exemptions into
account

enuf=1tstcrd(uptr,amount,real);
Test if user account structure has
enough credits

int enuf; 1=had enough, 0=didn’t

struct usracc *uptr; pointer to active user structure

long amount; number of credits (don’t deduct)

int real; l=don’t take debt or exemptions into
account

enuf=gtstcrd(userid,amount,real);
Test if any user has enough credits

int enuf; 1=had enough, 0=didn’t

char *userid; User-ID

long amount; number of credits (don’'t deduct)

int real; l=don’t take debt or exemptions into
account

Developer’s Guide DEV-95

Credit Consumption Rate

To change a user’s credit consumption rate, you can set usrptr->crdrat to
the credits to consume per minute. For example:

usrptr->crdrat=120; /* consume credits at twice the normal rate */

Whenever a user exits a module of The Major BBS, his credit consumption rate
is restored to the default value (as specified by the Sysop in the MMUCRR
offline Security and Accounting option).

Global Commands

Global commands are commands that users can enter from almost any prompt on
the BBS. (One exception is: you can’t use global commands while inside the
Full Screen Editor.) Making your own global command means two things:
making a handler routine, and registering the routine. The handler routine
intercepts every line of user input and, if it recognizes your special
global command, responds to it and returns true (otherwise returns false).
Registering the routine allows the mainline program to call it with each
line of user input.

The handler routine has at its disposal all the global variables associated
with line input, including margc, margv, input, and so on (see page 74), in
addition to global variables for user session information such as usrptr->,
and usaptr-> fields (see USRACC.H and MAJORBBS.H).

IMPORTANT: The global command should be coded efficiently. It
must very quickly reject user input (return false) when it doesn’t
recognize the command. For example, the global command handler
should probably never access a database in the quiescent (return
false) case.

Here's an example of a global command called "/now" to tell the time of day:

int
glotime(void) /* global command for telling the time of day */
{
if (margc == 1 && sameas(margv([0],"/now")) {
prf("At the tone, the time will be %s\7\r",nctime(now()));
outprf(usrnum);
return(l);

return(0);

1

The check for (margc == 1) is necessary, because margv[n] is undefined when
n >= margc. The sameas() check is case-ignoring so users can also type
"/NOR". The routine returns a 1 if it recognizes the user’s input as the
global command it's looking for, or a 0 if it does not.

DEV-96 Galacticomm

Here are all the possible return values for the global command handler:

0 Command not recognized. Executive will pass entire command
on to some module’s input handler (sttrou(), lonrou(), or
lofrou(), as appropriate). You must always return 0 when you
don’t recognize the incoming command, and especially when
margc == 0.

1 Command recognized and processed. Executive will ask the
module in effect to reprompt by simulating a <CR> from the user,
calling the module’s sttrou(), lonrou(), or lofrou() routine
with margc == 0. The (usrptr->flags&INJOIP) flag will be set so
the routine could recognize this condition. If you have any
prf() or prfmsg() output, you must do an outprf(usrnum) before
you return the 1 (as in the glotime() routine, above).

-1 Command recognized and processed -- don’t reprompt.
Executive will not reprompt the user. This is also a return
value where no outprf() is likely to take place unless you do it
yourself.

-2 Command recognized and processed -- don’t reprompt, but do
prf() or prfmsg(). Executive will not ask the module to
reprompt, but it will assume you have something in the
prfbuf and will do an outprf() for you.

You can leook at the hdlinp() routine in MAJORBBS.C for exactly how these
return values are used.

The next step is registering the global command as part of your
initialization routine (page 29):

int glotime(void); /* this is the prototype */
void EXPORT
init__myroutine() /* the module initialization routine */

globalcmd(glotime);

Developer‘’s Guide DEV-G7

TIP: The global command feature has possible utility beyond defining

global commands for users. For example, you could make a routine to intercept
all user input for diagnostic or management purposes.

You can define up to 25 global command handler routines using this function:

globalemd(rouptr) define global command handler routine
int (*rouptr)(); pointer to routine

All global command handlers can be temporarily disabled for a channel by
setting the special NOGLOB flag, as in:

usrptr->flags |=NOGLOB;
and later cleared with:
usrptr->flags&="NOGLOB;
This is done during teleconference chat modes, for example.

Here are a few examples of glcbal commands and where they’re coded:

Command Purpose Source code

/R <userid> registry report REGISTRY.C

/P <userid> <message> page MJRTLC.C or ENTTLC.C

V& who’s online MJIRTLC.C or ENTTLC.C

/L <userid> lookup user account MAJORBBS.C

/INVIS invisible sysop MAJORBBS.C

/GO <page-name> global Menu Tree "GO" MAJORBBS.C and MENUING.C
/RECENT recent logoffs GALGLO.C

The following commands are not registered global commands. These are
special commands available from all menu pages:

Command Purpose Source code

FIND Search menu pages MENUING.C and MAJORBBS. C
DISABLE (Sysop only) Disable a page MENUING.C and MAJORBBS.C
ENABLE (Sysop only) Enable a page MENUING.C and MAJORBBS.C

DEV-98 Galacticomm

Full Screen Editor

The Full Screen Editor is a sub-service used by Electronic Mail and Forums
for message editing. It allows a user to edit a block of text of a certain
number of 80-column lines. See the Operations Manual for instructions on
using the editor from the user’s point of view.

There are actually two editors, the Full Screen Editor and the Line Editor
that depend on whether the user’s terminal has ANSI capability or not.
Fortunately for you, the developer, this distinction is transparent. The
bgnedt() routine will make use of what the BBS already knows about the
user’s terminal, and fire up the appropriate editor.

bgnedt (siz,buf,tsiz,topic,whndun,flags)
begin editing a message

int siz; max size of text

char *buf; buffer for text

int tsiz; maximum size of topic (incl NUL)
char *topic; buffer for topic (NULL if no topic)
int (*whndun)(int quitex); routine to call when done editing
int flags; special editor option bits

An excerpt from MAJORBBS.H, defining the bits of the last parameter:

/* flags that can be passed to bgnedt() */
#define ED_READON 2 /* Vread only" mode */
#define ED_CLRTOP 4 /* clear topic buffer upon entry o'}
#define ED_CLRTXT 8 /* clear text buffer upon entry *y
#define ED_FILESD 16 /* use "file" flavor of editor */
#define ED_LINEMO 32 /* force use of the line editor *y
#define ED_FIXTOP &4 /* don't allow changing of the topic field */

(Note: the ED FILIMP flag that appears in MAJORBBS.H is not supported.)

Call bgnedt() to allow the user to begin entering text. You might as well
make the siz parameter a multiple of 80 bytes plus 1 —- only an integral
number of 80-column lines will be available to the user. The buffer should
be somewhere that will stay active and available throughout the editing
process (a subset of the Volatile Data Area is ideal for this -- just make
sure you've allowed enough room with dclvda()). If you want a topic field,
allocate another buffer for it (up to 51 bytes leng) that has the same
durability (for example, another portion of the Volatile Data Area).

After you call bgnedt(), the editor will usurp your state and substate code
for the entire editing session. That means, for example, that your module’s
hang-up entry point, huprou(), will get called with the editor’s state in
effect in the event that the user hangs up while still in the editor.

If you want to detect that condition (and the editor is active on the
channel due to your module’s invocation, of course), you need to set it up
somehow. Remember that your huprou() entry point will be called regardless
of what state or module the user is in. You can detect that the user was
editing on ycur behalf by setting a flag when you call bgnedt() and clearing
it when your (*whndun)() routine gets called.

edtimr (imradr) specify import message routine

int (*imradr)(); address of import message routine
got=(*imradr)(msgno); call to import routine ("New" command)
int got; l=message imported O=error

long msgno; nunber of message to import

(user typed this in)
Developer’s Guide DEV-99

The editor may be set up to allow users to import other messages into the
message that they are editing. This is done by calling the edtimr() routine
immediately after calling bgnedt(). Then when a user specifies <Ctrl-N>

for "new" in the editor, he has a choice of importing another message or
clearing the current message buffer. The "imradr" routine is passed the
message number specified by the user, and is expected to do the actual
import by filling the editor buffer (and possibly setting the topic and
other items).

Your (*whndun)() routine must restore your state and substate (usrptr->state
and usrptr->substt) to values for your own module, and prompt the user for
the next action (the next question after the editor is over).

The (*whndun)() routine is passed one of these values:

0 user wants to save the editing he’s done
ED QUITEX wuser wants to quit and abandon the results of his editing

You should check this flag to see if your code should save the buffer or
discard it. (You must remember where the buffer is, it’s what you passed to
bgnedt () in the buf parameter.)

The return value of (*whndun)() can be one of these:

1 Ok, exiting the editor (I’'ve restored my state and substate
and prompted the user).

0 Exit the editor, and exit this module too (your sttrou()
should return 0, and we should exit to the parent menu).

Here's an example of a Sysop Feedback Forum using the Full Screen Editor:

¥ kR Rk ok ek ko ek ok ek ek R * ek e e ek e ek ok R kR
GALFBK.C
Copyright (C) 1989-1994 GALACTICOMM, Inc. ALl Rights Reserved.

Feedback to Sysop (sample module discussed in the
Developer's Guide for The Major BBS)

* oA ok * % % * X % ¥
* % F B 4 % 4 % % &

- RNStein, January 1989

hbabideddebbabbbiabsbdebabieb bbb b LR AL]

#include "gcomm.h"
#include "majorbbs.h"
#include "galfbk.h"

STATIC int fbkinp(void);
STATIC int fbkdun(int flags);
STATIC void fbkfin(void);

int fbkstt; /* Feedback module state number oy
FILE *fbkmb; /* feedback configuration variables o 4
FILE *fbkfp; /* feedback text file y
struct module fbkmodule=(/* module interface block */
", F ol name used to refer to this module */
NULL, J* user logon supplemental routine */
fokinp, ad input routine if selected */
dfsthn, i status-input routine if selected */
NULL, /g "injoth" routine for this module */
NULL, > user logoff supplemental routine */
NULL, Vid hangup (lost carrier) routine *f
NULL, it midnight cleanup routine L7 S
NULL, ik delete-account routine */
fbkfin Vi finish-up (sys shutdown) routine */

DEV-100 Galacticomm

#define TPCSIZ 40 /* maximum characters in topic */

#define FBKSIZ 1921 /* max chars in feedback (for 24 lines) */
struct fbkusr (/* feedback to sysop user data block F
char text[FBKSIZ]; /* text buffer *f
char topic[TPCSIZ]; /* topic buffer */

#define fbkptr ((struct fbkusr *)vdaptr)

void EXPORT
init__feedback() /* initialize feedback stuff oy
{
stchy(fbkmomle.descrp,M("GALFBK.I*DF“),HNHSIZ};
fokstt=register_modul e(&fbkmodule);
fokmb=opnmsg ("GALFBK.MCV");
dclvda(sizeof(struct fbkusr));

X
STATIC int
fbkinp(void) /* feedback handler i
{
setmbk (fbkmb);
if (margc == 1 && sameas(margv[0],"X")) {
return(0);
3
do {
bgnenc();
switch(usrptr->substt) {
case 0:
cncchr();
primsg(HELLO);
outpr f(usrnum);
bgnedt (FBKSIZ, fbkptr->text,
TPCSIZ,fbkptr->t0p1‘c,fbkdun,ED_CLRTOP+ED_CLRT)(T};
break;
}
> while (lendcnc());
outprf{usrnum);
return{1);
b
STATIC int
fbkdun(/* feedback editing when-done ey
int quitex)
¢
char *cp;
usrptr->state=fbkstt;
setmbk (fbkmb);
if (quitex == 0) (
for (cp=fbkptr->text ; *cp != '\0' ; cp++) {
if (*cp == '\r') (
t:p=l\n|’.
>
>
if ((fbkfp=fopen("GALFBK.TXT" FOPAA)) == NULL)
catastro("Cannot open GALFBK.TXT for append!");
b
fprintf(fbkfp,"*** From %s on %s at %-5.5s %s\nZs\n\n\n",
usaptr->userid,ncdate(today()),nctime(now()),
fbkptr->topic, fokptr->text);
fclose(fbkfp);
prfmsg(THANKS ,usaptr->userid);
outprf{usrnum);
¥
return(0);
¥
STATIC void
fokfin(void) /* feedback shutdown *
{
clsmsg(fbkmb);

Developer‘’s Guide DEV-101

Here are the offline Text Blocks that go with this example:
LEVEL6 {3

HELLO (<ESC>[0;1;32m
Hello, and welcome to the Sysop Feedback Forum. This service is provided
to encourage your comments and criticisms.

When you are done typing, you can hit <ESC»[37m<Ctrl-G><ESC>(32m to save your comments.

)} T Feedback welcome message

THANKS (<ESC>[0;1;32m
Thank you for taking the time to leave your comments, <ESC» [33mis<ESC>[32m!
) T Feedback thanks for comments

This source code and all support files are available on the Galacticomm Demo
System, (305) 583-7808, in a file named GALFBK.ZIP. (Note: <esc
represents the ASCII escape code ’\x1B’.)

When a user selects this service, he is introduced to it with the HELLO{ }
message, and a "(N)onstop, (Q)uit or (C)ontinue?" choice. Then he enters
the Full Screen Editing mode, where he types in a topic and a message. When
the user hits <Ctrl-G>, the topic and message (along with other information)
are appended onto the end of the text file GALFBK.TXT. The Sysop can
periodically read this file and delete it.

struct module fbkmodule

This module structure defines the text-line input entry point (fbkinp(
the status handler (the standard system default status handler dfsthn(
and a shutdown routine (fbkfin()).

1),
))e

struct fbkusr

This is the structure template for this module’s use of the Volatile Data
Area. The body and topic of the feedback will be stored here. The "fbkptr"
macro casts vdaptr into a pointer to an fbkusr structure, for convenient
coding.

init_feedback()

This initialization routine registers the feedback module and opens the
GALFEK.MCV file with the text blocks for the module. The call to dclvda()
declares this module’s requirements for the size of the Volatile Data Area.

fbkinp()

This is the input text line handler for the module. It is coded with the
standard command concatenation and "X"-to-exit features, although neither of
them are actually used. They’re in there to make it easier for you to

edit this source code into a module of your own. But the only action
happening in fbkinp() is this: when the user enters the module, he’s
greeted, and then shuffled straight off to the Full Screen Editor.

DEV-102 Galacticomm

fbkdun()

This function is the when-done routine associated with the module’s
invocation of bgnedt(). (Notice how it’s identified in the bgnedt () call?)
If the user did not <Ctrl-0> quit the editing, then the text is written to
disk. First the '\r’ line-terminators that the FSE uses are translated into
the '\n’ line-terminators that fprintf() likes. Then the file GALFBK.TXT is
opened in append-ASCII mode. Then the User-ID, date, time, topic and
message body are written to the file. Finally the user is thanked for his
efforts. Returning 0 means to return to the parent menu page, as opposed to
staying in this module.

Full Screen Data Entry

FSD can perform the following functions:

o Display data
0 Enter data, full-screen mode
o Enter data, linear mode

Full-screen entry mode requires ANSI capability and a large enough user
screen to hold the entire template. Data displaying, or linear entry, can
take place whether the user has ANSI capability or not. To use FSD with The
Major BBS, ycu'll need to create these:

o Template (in .MSG file, level 99)
o Field specification string (usually in memory)
o0 Memory for the session’s variable-length data structures
o Default answer string (usually created on the fly)
o Field-verification routine (optional)
o When-done routine (process answers, restore state/substate)
o Calls to FSDBBS.C routines
Procedure;

1. Create a Template in an .MSG file. (See UEDANSI{} in
BBSSUP.MSG for an example. See FSD.H for a complete
definition of the template format. FSDBBS will automatically
translate to \r\n terminators.) You will probably have a
different template for ANSI users than for non-ANSI users.

2. Make a permanent copy of a Field Specification String in memory.
(See uinfsp(] in UINFED.C for an example. See FSD.H for the
complete specifications of this format also.)

3. Find out how much memory to allocate:
If the template

Make a call like this: is for an:
nbytes=fsdroom(tmpmsqg, fldspc,0) ; Entry session

nbytes=fsdroom(tmpmsg,fldspc,-1); Displaying

Make a call like this from your init routine() and identify
the above Template and Field Specification strings (after
opening the appropriate .MCV file of course). This will tell
you the size of the region you must provide to support data
entry or display. cCall fsdroom() for all templates/field
specification combinations you will be using to make sure
you’ll have enough room for all of them.

Developer’s Guide DEV-103

4. BAllocate the space fsdroom() requires. (You can use dclvda()
to put it in the Volatile Data Area.)

(By the way, fsdroom() will need to be called again,
immediately before the display or entry session begins.)

5. Format your default or original answers into an Answer String
or use "" to default to all blank. (See the use of uinfmt[]
in UINFED.C for an example. See FSD.H for the specifications
of an answer string.) The answer string can come from
getmsg(), but it cannot be in the prfbuf. wvdatmp is a good
candidate, making sure it’s big enough. Be sure to use only
legal values in your default answer string (per your own field
specifications string and validation routine).

6a. To display data call:

fsdroom(tmpmsg, fldspc,-1);
fsdapr (sesbuf,seslen,answers);
fsddsp(fsdrft());

6b. To begin a full-screen entry session, call:

fsdroom(tmpmsg, fldspc,1);
fsdapr (sesbuf,seslen,answers);
fsdrhd(title);
fsdbkg(fsdrft());
fsdego(fldvfy,whndun);

6c. To begin a linear entry session, call:

fsdroom(tmpmsg, fldspc,0);
fsdapr (sesbuf,seslen,answers);
fsdego(fldvfy,whndun);

Notes:

Fields are numbered 0 to N-1. How do you tell FSD what N is? N
is computed from the field specs by fsdroom() and stored in
fsdscb->numfld. The number of fields that are also represented in
the template is fsdscb->numtpl, which usually equals but never
exceeds N. (You can’t display or enter a field outside the range
0 to fsdscb->numtpl-1.)

tmpmsg is the code for the template stored in the level 99 option
in the .MSG file.

For entry sessions, you can supply a custom field-verification
routine.

Remember that fsdroom() in step 6 outputs a bunch of stuff to the

prfbuf. This stuff must be untouched between fsdroom() and
fsdapr() calls.

DEV-104 Galacticomm

The results of fsdapr() are all in the sesbuf. The seslen
parameter is the size of sesbuf. This means that after calling
fsdroom() and fsdapr(), you can call the other routines (fsddsp(),
fsdrft(), fsdrhd(), fsdbkg(), fsdego()) any time later and in any
order as long as you maintain the sesbuf passed to fsdapr().

If you have any prf’ing you want to show up immediately before the
entry/display, be sure and do it AFTER the call to fsdapr(), which
leaves the prfbuf empty.

vdaptr, or a subset of vdaptr, is a good thing to use for sesbuf.

The (*whndun)() routine must restore your usrptr->state and
usrptr->substt codes, as well as handle the end of the session.

The title in fsdrhd() is only for smooth operation for RIPscrip
users -- this should simply be a character string title for
viewing above the entry screen, for example "Contact Datbase".

Avoiding Fields

If your program needs to conditionally blank out some fields in the display,
you need to (1) modify the template, and (2) flag the appropriate fields as
"avoid". For (1), use the tpwipe() routine on the results of fsdrft()
(before passed to fsddsp()) to modify the supporting text for the
appropriate fields of the template. For (2), set the FFFAVD flag for the
fields to be avoided (see FSD.H) after calling fsdapr().

For example, to display all data but blank out field 5 and some of the
supporting text surrounding field 5, you could code something like:

char *tp;

fsdroom(tmpmsg, f ldspe,0);
fsdapr(sesbuf,seslen,answers);
tp=fsdrft();

tpwipe(tp,5,1,1);
fsdscb->flddat (5] . flags |=FFFAVD;
fsddsp(tp);

This works almost identically for "avoiding” fields in a full screen entry
mode, except you need to intercept things before fsdbkg() is called (instead
of before fsddsp()). On the other hand, to show a "protected" field that
the user can see but can’t change, the FFFAVD flag should be set after
fsdbkg() is called, but before fsdego(), and don’t call tpwipe() at all.

In linear entry mode, you just need to set the FFFAVD flag for the
appropriate fields after calling fsdapr().

Getting Answers After a Session

After an entry session is over there are a few ways to get the answers. See
FSD.H for more details.

Developer’s Guide DEV-105

stg=fsdnan(fldno); Get a field’s answer

char *stg; pointer to answer

int fldno; field number 0 to N-1

fsdfxt (fldno,buffer,maxlen) Store answer for field into buffer
int fldno; field number 0 to N-1

char *buffer; store the answer here

int maxlen; don't use more than this many bytes
index=fsdord(fldno) Find index of multiple choice answer.

Returns -1 if the answer was not one
of the ALT='s.

int index; the index, 0 to N-1, for the answer
according to the N possible "ALT="
alternate values for the field

int fldno; field number 0 to N-1

Handling Answers at Other Times

After a session, the data structures allocated by fsdapr() allow quick access
to pieces of the answer string. But at other times, the following routines
from FSD.C can be used to deal with answer strings (see FSD.H for more
details):

length=stranslen(answers); Find length of an answer string

int length; length including final double ’\0’.

char *answers; answer string

value=fsdxan(answers,name) ; Get the value of a field of an answer,
returning "" if not found.

char *value; pointer to answer string value

char *answers; answer string

char *name; name of answer

fsdpan(answers,name,value); Put a new value into an answer string.

char *answers; answer string

char *name; name of answer

char *value; pointer to answer string’s new value

fsddan(); Delete the answer fsdxan() just found

Here's an example of creating an answer string from scratch using sprintf():
sprintf (answers, "NAME=%5s%CRANK=%5%CSERIALNO=%s%c" ,name, '\0’,
rank, '\0’,
serno,’\0’);

For an example of a simple module that uses Full Screen Data Entry, download
the file GALCTX.ZIP from the Galacticomm Demo System at (305) 583-7808.

DEV-106 Galacticomm

File Transfer

Uploads

Assuming that you’ve already taken care of all interactive aspects of your
application (if you haven’t, see about creating interactive modules on page

page 29), then here are the steps to take to add file uploading

capability:

1

In your source code, include the following special-purpose
header file:

#include "filexfer.h"

Code your own upload handler routine. The upload handler
routine includes all the ways that the file transfer service
will be asking you for assistance after you’ve turned control
over to it. This is most of the work, and it’s discussed in
detail below.

Call fileup() when you want to begin an upload, or to present
the user with his protocol choices.

fileup(filnam,prot, fuphdl); File upload

char *filnam; name of file (""=multi)
char *prot; protoceol code

int (*fuphdl)(int fupcod)); upload handler routine

The filnam parameter is only used for indicating single file
("FILENAME.EXT") or multiple files (""), and for inclusion in
some user prompts. Your upload handler routine will have to
come up with the full file path in the FUPPTH, FUPBEG, and
FUPEND cases. (If you do get a file name in ftfscb->fname, it
came from the protocol, otherwise you’ll get "".)

Invalid values for prot are handled appropriately, so you
can pass unedited user input in the protocol parameter. The
last parameter to fileup() is the address of your upload
handler routine.

Calling fileup() usurps your state and substate (usrptr->state
and usrptr->substt). It’s up to your FUPFIN exit peint to
restore them. (More on this subject below.)

Upload Protocol Codes

Single—file: Hpn "M" Lol niw oyt
single-file or multi-file: "B" "G" "z" "K"
to log off after uploading: append "!" to any of the above

menu of download protocols: "2" or ""

Developer’s Guide

DEV-107

To validate an upload protocol code, you could use valupc():

ok=valupc(prot); Is this a valid upload protocol?
int ok; l=valid, O=invalid
char *prot; protocol code string

Upload Handler Routine

This routine is a collection of what we call "exit points". After your
special-purpose module hands control over to the general-purpose file
transfer service, FTF, there are several cases when FTF is going to need to
consult back with your application.

Imagine you hire a decorator to remodel your house, and you move out
temporarily so you're not in his way. He'll still need to get back in touch
with you to go over the pool plans, verify the wallpaper, get your plumber’s
phone number, and most importantly, to tell you when you can move back in.
This handler routine is the means for the FIF to "get back in touch with"
your application, for all kinds of specific reasons.

For example there are three occasions when your application needs to come up
with the file's full DOS path name:

case: FTF service needs the DOS path in order to:

FUPBEG create the file

FUPEND update the file’s time and date

FUPPTH check if there’s an existing file that's
older or smaller (for ZMODEM features)

Other exit points are cues for your application to verify that the file name
is valid, check if the user has authorization to upload it, handle a
completed upload, handle an aborted upload, to "import" a file that'’s
already available on disk, and most important of all, when the file upload
session is over, for your application to prompt the user and resume control
of his channel.

Here's an informal pseudo-code template for an upload handler routine. This
is mostly in C code, but it’s liberally laced with English descriptions
where appropriate.

int

fupxxx(/* Handle the application-specific */

int fupcod) /* aspects of your uploads */

{ /* (fupcod=code for each aspect) */
int re=0;

setmbk(whatever your application uses);
(be sure to set any other appropriate globals)
switch(fupcod) (
case FUPPTH: /* Where would we put this file? */
sprintf(ftfbuf,"<D0S path for the file>", ftfscb->fname);
re=<resume upload> 7 2 : 1;
break;
case FUPBEG: /* Begin uploading this file *y
if (user can't upload this file) {
sprintf(ftfbuf,"He can't upload this file because.");

X

else {
sprintf(ftfbuf,"<DOS path for the file>", ftfscb->fname);
reserve file
re=1;

k)

break;

DEV-108 Galacticomm

case FUPREF: /* Refer to file, don't upload it */
strcpy(<somewhere>, ftfbuf);
break;

case FUPEND: /* This file uploaded successfully */
unreserve file
record a conpleted upload
sprintf(ftfbuf,"<00S path for the file>", ftfsch->fname);
break;

case FUPSKP: /* This file upload aborted *f
unreserve file
record an aborted upload
break;

case FUPFIN: /* End of uploading session -
usrptr->state=your state
usrptr->substt=your substate

prompt(whatever comes next); /* (don't call outprf()) *f
re=1;
break;

case FUPHUP: /* Channel hanging up */
the FUPFIN exit point never got called, clean up as req'd
break;

)

return{rc);

You might find it handy to download FUPXXX.C from the Galacticomm Demo
System, (305) 583-7808, which contains the above pseudo-code, and then edit
it line-by-line into what your upload handler will need.

In addition to the fupcod input to your upload handler routine, there are
several global variables that you can always assume will be available:
usrnum, usrptr, usaptr, and vdaptr. In addition, these FIF variables are
available:

struct ftfscb *ftfschb; Session Control Block (see FTF.H) for the
current file transfer session

struct ftfpsp *ftfpsp; protocol specifications (see FTF.H) for the
current file transfer session

char *ftfbuf; multi-purpose buffer (context dependent)

If you need any other global variables, be sure to set them up in your
routine. The meaning of your routine’s return value depends on the type of
exit point (which is coded in fupcod). These will be discussed individually
for each exit point. In some cases, no return value is expected. You
should return 0 in each of those cases to allow for future expansion.

Now we’ll go into each of the exit points in detail. To simplify the
discussion, we'll pretend that FTF is a person telling your application what
it needs.

I,me,my = FTIF file transfer service
You,your = application software

From the remodeling analogy, this is like the decorator talking to the
homeowner.

Developer’s Guide DEV-109

FUPPTH - Where would we put this file?

Tell me what DOS path you plan to use for this file coming up, and store
that path in ftfbuf. If the protocol was capable of telling us a file name,
I've put it in ftfscb->fname, otherwise ftfscb->fname ig "". Usually
you’ll return 1 in this case.

On the other hand, if you have a file fragment left behind from an earlier
aborted upload of the same file, then give me the path for that file
fragment and return 2. I may try to resume the upload if the protocol is
capable (e.g. ZMCDEM). You should only return 2 if you're reasonably
confident that the existing file is the result of an aborted upload.
Otherwise, a useless mix of two different files might end up on the disk.

You could also just return 0 (and skip putting the path in ftfbuf) if you
don't plan on supporting file upload resume after abort, and don’t plan on
supporting the upload-if-exists/newer/bigger options that ZMODEM is capable
of.

FUPBEG - Begin uploading this file

Verify whether the user is allowed to upload this file. See ftfsch->fname
and ftfschb->estbyt for the file name and size, if the protocol has supplied
them. The file time and date may be in one of three forms:

Protocol provides: ftfscb->dosdat ,dostim ftfscb->unxtim
No information about date & time 0,0 0oL

DOS time and date formats date,time oL

UNIX seconds since 1/1/70 0,0 UNIX time

See page 178 about time and date formats and handling routines. See

page 182 for routines to read and set file time and date. After the file
is uploaded 1’1l stamp this time and date on the file (if any), as long as
you provide me with the proper path in the FUPEND exit point.

The main reason for the FUPBEG exit point is for you to check this user’s
upload permission and any other possible restrictions. Here are some things
you might check for:

© Does the file name have the proper syntax?

0 Does the file name conflict with a reserved name? (For example,
CON.TXT is an alias for the Sysop’s console!)

0 Does this user have permission to upload this file?

Does this user have permission to overwrite an existing file?

0 Are too many users opening files at once (thereby using up all file
handles)?

o TWill users be able to use up all available disk space?

© Will users be able to upload a very large number of small files,
making directory access very slow?

© If charges are associated with upload, can the user afford to pay?

0 Could this file name possibly conflict with one of the other
online users who are also using your application?

0 Will other users online be able to see/download/modify this file
while this user is in the process of uploading it?

o

DEV-110 Galacticomm

If it’s not CK to upload, return 0 and put an explanation of some kind in
ftfbuf. The explanation should be a complete sentence (begining with a
capital letter and ending with a period), for example "You don’t have access
rights to that file.". The explanation can be up to 79 characters long, not
including the terminating NUL ’\0’.

If it’'s CK to upload, return 1 and tell me what DOS path to use for the file
(store it in ftfbuf). Specify the maximum allowable size for this file, in
bytes, in ftfscb->maxbyt. If there truly is no maximum size limit, then
just leave ftfscb->maxbyt at the default value MAXLONG (about 2 gigabytes,
see FTF.H).

You can check ftfscb->estbyt yourself if you like, and call things off if
the file’s going to be too big, or you can leave this work to me. Either
way, you should put some kind of size restriction in ftfscb->maxbyt. Hacked
terminal software could theoretically claim to be uploading a 1000-byte file
then proceed to upload a 1,000,000,000-byte file.

Setting ftfscb->maxbyt does two things for you. I’'ll immediately make sure
that ftfscb->estbyt doesn’t exceed your limit (and abort the transfer if it
does). And I'll also keep tabs on the size of the file while it’s being
uploaded, and abort if the limit is exceeded.

An important feature of the file uploading service is that you can count on
the fact that for every FUPBEG call, there will be exactly one call to
either FUPSKP (upload of this file aborted) or FUPEND (upload of this file
was successful), except in extreme cases such as power loss.

FUPREF - Refer to file, don’t upload it

You’ll never get this case if you haven’t willingly and knowingly set the
ftuptr—)flags?=FTFREF flag after you called fileup(). This all has to do
with uploading a file "by reference". Electronic Mail and the Forums have
this ability. The Sysop can "upload" a file that already exists on the
BBS’s disk using the "F" file-import protocol. The file may stay where it
is, and the E-mail or Forum message that it's attached to just "refers" to
the real location of the file.

You identify your application’s capacity for upload-by-reference by setting
the ftuptr->flags|=FTFREF flag immediately after you call fileup(). By the
way, that’s all you identify by setting FTFREF -- your capacity for upload
by reference. You don’t have to be concerned with the user’s authority to
use file importing. 1I’11 only allow this if he has the key specified by the
offline Security and Accounting option FIMLOCK, which is SYSOP by default.

Here's the situation if I ever happen to get around to calling the FUPREF
exit point: The user hit the "F" protocol, and either the path he specified
had no colon in it (in which case I assumed upload by reference was
desired), or I confirmed with him that it would be OK to import this file by
reference instead of actually making a copy of it.

I'm not going to use the return value from your FUPREF exit point, but you
should still return 0 to allow for future features. If I call FUPREF at all,
I'11 only call it after a FUPBEG where you returned 0, and immediately before
I call FUPEND. When FUPREF is called, ftfbuf contains the path just as your
FUPBEG handler left it. This is your baby now -- you asked for it -- so do
whatever you have to do to keep track of this uploaded-by-reference file.

Developer’s Guide DEV-111

FUPEND - This file uploaded successfully

The file was uploaded successfully. The actual size of the final file is
available to you in ftfscb->actbyt. (If the upload was resumed, using
ZMODEM's resume-after-abort feature, ftfscb-jactbyt is the total bytes in
the file, not just the portion stuck on in this session. There’s no way to
find out whether a resume took place or not, or to figure the size of the
portion.)

I need to know the DOS path for this file one more time (again, store it
in ftfbuf) so I can set its time and date. If you don’t want me to store
the time and date, just put an empty string in ftfbuf.

If you're in the habit of checking against conflicts or collisions with
other users, now’s the time to recognize that this user is all done with
this file. So you can "unreserve" it if you did any reserving in the FUFBEG
exit point.

I'm not expecting any return value from either your FUPEND or FUPSKP exit
points, so you should return 0.

FUPSKP - This file upload aborted

The current file upload has been aborted for some reason. The size of the
fragment is available to you in ftfscb->actbyt. If you don’t want fragments
of aborted uploads lying around you need to delete the file now. You can do
this by coming up with the file path name and passing it to unlink().

Here also, if you’ve been reserving the file name or a file handle since
FUPBEG, now's the time to unreserve it.

FUPFIN - End of uplecading session

This step winds up the upload session and returns control to your regularly
scheduled program. This is distinguished from FUPEND which only winds up

from the upload of a single file. So for multiple file uploads there could
be several FUPBEG/FUPEND pairs (or FUPBEG/FUPSKP if things didn’t work out).

In ftfscb->actfil you’ll find a count of the total number of files
successfully uploaded. In ftfscb->tryfil is the total files that we tried
to upload. Of course it’s always the case that actfil <= tryfil. wWhen
actfil < tryfil, not all the files made it. I've already told the user all
about this, including why the last transfer aborted, or why the last of
possibly several files were skipped.

Since you're taking back control of this channel, it’s up to you to set
things straight for what’s up next for this user. Here are two
alternatives:

You want control back You want to return to the parent menu
0 Restore your usrptr->state o Restore your usrptr->state
O Restore your usrptr->substt o Say bye to the user if you wish (you
0 Prompt the user (you don’t don’t need to call outprf())
need to call outprf()) o Return 0
0 Return 1

DEV-112 Galacticomm

Either way, if you're prompting or saying goodbye using prfmsg(), you need to
be sure to set your message block pointer using setmbk().

The pseudo-code for FUPFIN handling on page 108 assumes you want to take
control back. Here’s an alternative pseudo-coding of the FUPFIN exit point
to allow you to exit to your module’s parent menu page:

case FUPFIN: /* End of uploading session *f
usrptr->state=your state
prompt(exiting); /* (don't call outprf()) */
rc=0;
break;

This may be appropriate if your module really doesn’t want to regain control
of the channel when the upload is done. 1In this case you only need to
restore the user’s state code (module number), not the substate. Your
module never actually regains control of the user’s channel. You can prompt
him with some parting words, but you don’t need to. For consistency you
should do whatever you normally do when the user exits from your module to
the parent menu.

In the case where you're supposedly retaking control, you may have to call
condex(), and possibly wind up returning control to your parent Menu Tree
menu afterall. This would be the case if you were about to return to your
module’s own internal main menu, and you found out you had gotten where you
are through command concatenation. See page 78 about this whole condex()
business.

Another handy feature of the file transfer service is that each fileup()

invocation is followed (eventually) by exactly one FUPFIN or FUPHUP exit
point invocation, except in dire cases (power loss for example).

FUPHUP - Channel hanging up

This is the alternative to FUPFIN that occurs when the user or the channel

is hanging up for some reason in the middle of the upload session. No return
value is expected, so you should return 0. You don’t need to worry about
termination of the individual file upload, if one had been in progress,
because FUPSKP will have been called already. But if there’s any
session-level (as opposed to file-level) cleanup to be done, now's your
chance. For example, in ESGUTL.C, FUPHUP is used to store the user’s Forum
quickscan information back to disk.

This brings up a tricky point that you may want to be aware of. HWhen a user
disconnects in the middle of one of your uploads, your module’s own hang-up
entry point (see page 38) will be called eventually, as it always is at
logoff. But you may not be able to recognize that the user was "in" your
module because his usrptr->state will be that of the file transfer’s state
code. One way out of this is your FUPHUP exit point. When the file
transfer service’s own huprou() get’s called, it will call your FUPHUP exit
point in your upload handler routine. That’s when you can do your module'’s
last minute housekeeping on this channel.

Developer‘’s Guide DEV-113

Uploading Example #1

Here's a very simple example of a module that uploads files on a BBS. Many
shortcuts have been taken in this code for the sake of brevity. It uses a
minimum of features, has few conveniences, and has none of the security
precautions that should be in place before putting software online for users
to access. 1It's sole purpose is to introduce you to the components of file
uploading. You can download the scurce code and other files relavent to
this example from the Galacticomm Demo System at (305) 583-7808. Look for
GALUPX.ZIP in the File Libraries.

Vi wrkdk " AW e e vl e e ol e e e ek
* -
* GALUPX.C ¥
* *
* Copyright (C) 1994 GALACTICOMM, Inc. ALl Rights Reserved. *
- *
* Uploading example. *
* -
® - R. Stein 12/6/93 *
*

*
haiahiabeibobebobdo bbb L R L b b bbb bbb bbb bbb At b)

#include “gcomm.h"
#include “majorbbs.h"
#include "filexfer.h"

STATIC int uplinp(void);
STATIC int fupupl(int fupcod);

int uplstt; /* Uploading module state number */
struct module uplmodule={"",NULL,uplinp,dfsthn};

void EXPORT

init__uploader(void) /* Uploader initialization *f
¢

stzepy(uplmodul e.descrp, gmdnam("GALUPX .MDF ') MNMSI12);
uplstt=register_module(&uplmodule);
mkdir("UPLDIR™);

X
STATIC int
uplinp(void) /* Uploader input handler *
{
switch (usrptr->substt) (
case 0:
prf(''Name of file to upload: ");
usrptr->substt=1;
break;
case 1:
if (margc == 0)
return(0);
>
fileup(strcpy(vdaptr,margv(01),"?", fupupl);
outprf{usrnum);
return(1);
b
int
fupupl(/* Handle the application-specific */
int fupcod) /* aspects of the upload example */
{ /* (fupcod=code for each aspect) */
int rc=0;
suwiteh(fupcod) (
case FUPBEG: /* Begin uploading this file Ny
case FUPEND: /* This file uploaded successfully */
sprintf(ftfbuf,"UPLDIR\\%s", vdaptr);
re=1;
break;
case FUPFIN: /* End of uploading session %
usrptr->state=uplstt;
H
return(rc);
b3

DEV-114 Galacticomm

This module allows users to upload files into the UPLDIR subdirectory of the
BBS. As is the case with most modules, Sysops need to create a module page
somewhere in their Menu Tree that uses it, normally the child page of some
menu. When users are online and choose this service they are asked to type in
a file name. When they do, control is turned over to the upload service and
the user chooses a protocol. After the upload is complete, the user is
returned to the parent menu page. Here is a discussion of the major
compenents of this program.

struct module uplmodule

This module identifies only one custom entry point: wuplinp() for the sttrou()
text line input handler. The default status handler, dfsthn() is the stsrou()
entry point for unusual status conditions.

init uploder()

The initialization routine for this module registers the module, using the
description in the corresponding module definition file. It also creates the
UPLDIR subdirectory to store the uploaded files, if one doesn’t exist already.

uplinp()

This routine handles text line input from the user after he selects this
upload service. Upon entry, the user is prompted to enter a file name. If
the user just hits RETURN, he is returned to the parent menu without
uploading. If he types in a file name, that name is stored in his Volatile
Data Area, and then he is handed over to the file transfer service. The
middle parameter to fileup() is "?" to give the user a list of available
upload protocols.

fupupl ()

This is the upload handler routine as described starting on page 108. The
FUPBEG and FUPEND exit points are used by FTF to get the file’s full path name
for opening the file, and for setting its time and date. The FUPFIN exit
point merely retores the upload service’s state code and returns 0, which
requests that the user be returned to the parent menu page. All other exit
points simply return 0

Potential Improvements to Upload Example #1

Here are some of the features left out of this brief example that you should
consider if you are using uploads in your application:

Limits on file size and quantity in the upload directory
Checking for conflicts between the file name and DOS devices
Deleting the fragment left behind from an aborted upload
Multiple-file uploads

Sysop-confiqurable prompts in an .MSG file
Sysop-configurable upload directory

Formal declaration and limitation on VDA usage

Command concatenation

Automatic reprompt after "/p" page command, etc.

Full module structure in source code, with comments

O0CO0CCOO0OD0Q0O0ODOO

All of these features are included in upload example #2.

Developer’s Guide DEV-115

Uploading Example #2

J Rk ok ke

w *
* GALUPX2.C *
* *
* Copyright (C) 1994 GALACTICOMM, Inc. ALl Rights Reserved. *
* *
* Uploading example 11 bl
* *
* - R. Stein 12/6/93 »
* *
. e ek g
#include "gcomm.h"
#include "“majorbbs.h"
#include "filexfer.h"
#include "galupx2.h"
STATIC int uplinp(void);
STATIC void uplfil(char *filnam,char *protoc);
STATIC int fupupl(int fupcod);
STATIC void uplfin(void);
int uplstt; /* Erhanded uploader module state number*/
static FILE *uplmb; /* file pointer for GALUPX2.MCV L7
char *upldir; /* UPLDIR upload directory .y
long uplbmax; /* max bytes allowed in UPLDIR T
long upl fmax; /* max files allowed in UPLDIR */
struct module uplmodule={ /* module interface block L7
e /* name used to refer to this module */
NULL, ™ user logon supplemental routine */
uplinp, I* input routine if selected wy
dfsthn, V5 status-input routine if selected */
NULL, e "injoth" routine for this module */
NULL, T user logoff supplemental routine */
NULL, il hangup (lost carrier) routine *f
NULL, * midnight cleanup routine s
NULL, /* delete-account routine */
uplfin Vid finish-up (sys shutdown) routine */
¥
void EXPORT
init__uploader(void) /* Uploader initialization wy
{
stzcpy(uplmodule.descrp, gmdnam("GALUPX2 .MDF"') MNMS12);
uplstt=register_modul e(&uplmodule);
uplmb=opnmsg("GALUPX2 .MCV") ;
mkdir(spr{"%s.",upldir=stgopt (UPLDIR)});
upl bmax=Lngopt (UPLBMAX, 0, 21474836471);
upl fmax=numopt (UPLFMAX,0,32767);
delvda(8+1+43+1);
2
STATIC int
uplinp{void) /* Uploader input handler L
{
setmbk (uplmb);
if (margc == 1 && sameas(margv[0],"X")) (
return(0);
3
do €
bgnenc();
switch (usrptr->substt) (
case 0:
cncchr();
primsg(usrptr->subst t=UPLNAME);
break;

case UPLNAME:
if (usrptr->flags&INJOIP) {
primsg(UPLNAME) ;
break;
¥
cncal L();
parsin();

DEV-116 Galacticomm

switch (marge) {

case 0:
mlfi[(llll’ll?ll);
break;

case 1:
uplfil(margv([0],"72%);
break;

default:
uplfil(margv[0],margv(11);

break;
)
} while (lendcnc());

outprf(usrnum);
return(1);

b
STATIC void
uplfil(/* upload file(s) */
char *filnam, /* file name, or " for multi-file */
char *protoc) /* protocol, or "% for list i
{
if (sameas(filnam,"*")) (
filnam="";
>
if (rsvnam(filnam)
strchr(filnam, ':') 1= NULL
strchr(filnam, *\\') 1= NULL
strstr{filpam,"..") 1= NULL) {
primsg(UPLRSV);
primsg(UPLNAME);
X
else {
stzepy(vdaptr, filnam,8+1+3+1);
fileup(filnam,protoc, fupupl);
2
k3
int
fupupl /* Upload handling routine .
int fupcod)
¢
int rc=0;
setmbk (uplmb);
switch(fupcod) ¢
case FUPBEG: /* Begin upload, check permission, reserve */
if (vdaptr[0] == '"\0' && rsvnam(ftfsch->fname))
strepy(frfbuf,“File name is a reserved DOS device name.");
break;
>
cntdir(spr("%s*.*", upldir));
if (numfils >= uplfmax)
strepy(ftfbuf, "Upload directory is full.");
bresk;
¥
ftfscb- >maxby t=upl bmax - numbyts
sprintf(ftfbuf,"%sks", upldir,vdaptr0] == "\0' ? ftfsch->fname
: vdaptr);
re=1:
break;
case FUPEND: /* End complete upload of a file, unreserve */
sprintf(ftfbuf, "4sks", upldir,vdaptr[0] == '\0' ? ftfscbh->fname
: vdaptr);
break;
case FUPSKP: /* Skip incomplete upload of a file */
unlink(spr("%s%s",upldir, vdaptr[0] == "\0' ? ftfscb->fname
1 vdaptr));
break;
case FUPFIN: /* Finish file upload session */
usrptr->state=suplstt;
if (ftfscb->actfil »>= 1) ¢
primsg{UPLTHX);
break; /* rc == 0, so we exit to parent menu page */
}
return(rc);
>

Developer‘’s Guide

DEV-117

Here

STATIC void
uplfin{void) /* Finalize uploading example
¢

clsmsg(uplmb);

are the CNF options for upload example #2:

LEVELS (O

This is the directory where the files will go.
Be sure to specify a proper path PREFIX (e.g.
ending with a backslash, or whatever)

UPLDIR {UPLDIR\} S 0 Upload directory:

This is the maximum number of files allowed in the
upload directory.

UPLFMAX {Maximum files allowed in upload directory: 1000} N 0 32767

This is the maximum number of bytes (the total of all
files) allowed in the upload directory.

*/

UPLBMAX {(Maximum bytes allowed in upload directory: 1000000} L 0 2147483647

LEVELS {3

UPLNAME (<ESC>[0;1;36m

Name of file to upload (or "*" for multiple files):) T Upload example 11 file name

UPLRSV {<ESC>[0;1;35m
That's a reserved or invalid DOS file name, please choose another name.
} T Upload example I1 file name collides with device list

UPLFUL {<ESC>[0;1;35m
The upload directory is full.
} T Upload example Il too many files

UPLTHX (<ESC>[0;1;32m
Thanks for uploading.
) T Upload example Il finished

This code, plus support files, is available for download on the Galacticomm
system in the file GALUPX2.ZIP. (Note: <tsc> represents the ASCII

Demo

escape code '\x1B'.)

TOP (TOP)

Make your selection (T,I,F,E,L,A,P,R,D,0,W,UN,S,? for help, or X to exit): U

Name of file to upload (or "*" for multiple files): COLDEMO.EXE

To start uploading COLDEMO.EXE, type:

A ... ASCII B ... YMODEM Batch

M ... XMODEM-Checksum G ... YMODEM-g

C ... XMODEM-CRC Z ... ZMODEM

1 ... XMODEM-1K K ... Kermit / Super Kermit

(Add 'i' to automatically log of f when done)
Your choice (or 'X' to exit): Z
(Hit Ctrl-X a few times to abort)
Beginning ZMODEM upload of the file COLDEMO.EXE
**B0100000023be50

(uploading takes place)

**%* UPLOAD COMPLETE *¥*
Thanks for uploading.

TOP (TOP)

Make your selection (T,I,F,E,L,A,P,R,D,0,W,UN,S,? for help, or X to exit): _

DEV-118

Here'’s what the module would look like online:

Galacticomm

Assuming that the menu selection to invoke the uploading service is "U", the
user can enter any of the following concatenated commands from that menu:

U Enter the upload service

U <filename> Upload a specific file, prompt for protocol
U <filename> <protocol> Upload a file using a protocol

U * Upload multiple files, prompt for protocol
U * <protocoly Upload multiple files using a protocol

struct module uplmodule

In this example, the module structure is fleshed out with a helpful comment
for each field. An uplfin() routine has been added to clean up before
shutdown.

init _uploader()

The initialization routine does the same work as does the one in the first
example, plus it also supports a Sysop-configurable directory for uploads,
and reads in Sysop-configurable byte and file limits. The dclvda() call
formally declares the need for enough space in the VDA to store a file name.

uplinp()

Some immediately obvious renovations are the checking for "X" to exit, and
the use of command concatenation routines (bgncnc(), cncxxx(), endecnc()).
When first entering this module, the cncchr() call helps with concatenated
commands the user could have entered from the parent menu page. The user is
prompted to enter a name for the uploaded file.

The UPLNAME substate handles the reaction to the upload file name prompt.
The user can respond by hitting "*" or RETURN to signify that multiple files
will be uploaded. But the first special case we handle is when the INJOIP
flag is set, meaning we need to reprompt after a "/p" page message or other
unexpected event. After that, parsin() reparses the input into separate
margv[] words (see about how bgncnc() unparses on page 75). These are
passed to an internal function, uplfil(), with default values for protocol
and file name as appropriate.

uplfil()

This function translates "*" for filename into the "" that the first
parameter of fileup() needs to signify multiple file uploads. It then
proceeds to check the file name for dangerous characters like ":", "\" and
"..". There are many other (less dangercus) illegal characters for file
names, but most of these are caught eventually when FTF tries to create the
file. 1If the file name is safe, it’s stored in the VDA and fileup() is
called. Notice that the file name is checked for size limitations before
writing to the VDA. Avoiding buffer overruns is a wonderful habit to get
into, although we’re not exactly at high risk here.

Developer’s Guide DEV-119

fupupl ()

In the FUPBEG exit point, we recheck for reserved names. This is necessary
for multi-file uploads when we don’'t know the names until this point. We
also need to check file size and quantity limits since these too are
dynamic. This may be a little impolite to the user to bring up this file
quantity limitation so late in the game, but it must be checked for each
file in a multi-file upload, sc it needs to be in FUPBEG anyway .

Even this check is not completely air-tight: if two users started uploading
5-Megabyte files at the same time, and the UPLBMAX setting is 6-meg, they
will probably both be allowed to complete their uploads. That’s because the

directory contents are measured only at the beginning of each upload,
without taking into account uploads that are already underway.

uplfin()
This routine politely closes the GALUPX2.MCV file when the BBS shuts down.

ASCII Downloads

To dump an ASCII file to the user’s terminal, you can use:

listing(path,whndun); list an ASCII text file to the
user’s terminal

char *path; DOS path of the file (must be
a permanent storage location)

void (*whndun)(all)); restore state & substate, prompt the
user for what to do next

int all; 1=all of file was output, O=aborted

The "path" parameter must point to a location where the file’s full path
specification will reside throughout the listing. For example, a region of
the volatile data area, a private malloc()’d region, a literal file name,
etc. Do not use spr(), a portion of input[], an automatic (stack) buffer,
or any other location where the contents will change before the (*whndun) ()
routine gets called.

The listing() routine will usurp the channel’s state and substate
(usrptr->state and usrptr->substt). It’s up to the (*whndun) () routine to
restore your state (return value from register module()) and substate. The
(*whndun) () routine gets passed a single parameter which is 1=all of the
file was downloaded, or 0=file was aborted by the user.

The listing() function will not be able to operate if the user has tagged
too many files for download (see about ftgnew() on page 121).

An example initiation of an ASCII download:

listing("E:\DOC93\SATNAV.HLP",lstback);

DEV-120 Galacticomm

An example (*whndun)() routine:

void
1lstback(int all)

{

Note that
does call
double pr

usrptr->state=snstate;
prfmsg(usrptr->substt=all ? FULLPMT : SHORTPMT);

the (*whndun)() routine does not need to call outprf(). (If it
outprf() for any reason, it should then call clrprf() to avoid
ompting.)

Downloads

Assuming
applicati
capabilit

1a

Developer’s Guide

that you’ve already taken care of all interactive aspects of your
on, then here are the steps to take to add file downloading

Y:

In your source code, include the following special-purpose
header file:

#include "filexfer.h"

Define your own "tagspec" data structure. This can be up to
17 bytes of data for storing information on your file, in any
format you choose. A tagspec may refer to a single file or
to multiple files (for example you could store "FILE.TXT" or
"* TXT"). To allow your files to be tagged for later
download, you’ll need to store enough information in this
17-byte structure to later reconstruct the file’s DOS path,
and any security and accounting information. We’ll talk more
about tagspec’s below.

Code your own download handler routine. This routine will be
called by the file transfer service to perform application-
specific tasks throughout the download session. This is
usually where your most work is, and it will be discussed in
detail below.

Call ftgnew() to reserve an entry in the tag table.

navail=ftgnew(); Reserve space in the tag table
int navail; Number of spaces available
struct ftg *ftgptr; tag table entry

Each user has his own row of entries in the 2D tag table, the
length of each row being specified by the offline
Configuration opticn MAXTAGS. All downloads, whether
explicitly tagged or not, are handled via an entry in the tag
table. If ftgnew() returns 0, there is no room. If it
returns nonzero, then that’s the number of spaces available,
and ftgptr will point to your spot in the user’'s tag table.

DEV-121

5. Now fill in the tag table entry. Store your tagspec in
ftgptr->tagspc, a 17-byte character array. Again, you know
the format of what’s stored here, the file transfer service
doesn't care. Set ftgptr->flags according to the flags:
FTGWLD (multi-file), and FTGABL (whether possible to tag or
not). And set ftgptr->tshndl to point to your tagspec handler
routine.

6. Call the ftgsbm(prot) routine to submit the tagspec.

usurp=ftgsbm(prot); Submit the tagspec for download

int usurp; 1=FTF has usurped control of session
O=you still have control of sessicn
char *prot; protocel code

Download Protocol Codes

single-file for immediate download: "M" "C" "1" "v"
single-file or
multi-file for immediate download: "L" "a" "B" "G" "z"
" ZR" llKll’
to log off after downloading: append "!" to any of the above

tag for later download: "T"
tag (quietly) for later download: "TQ"

for compressed file viewing: "V

menu of download protocols: "2" or ""

You can use the "TQ" protocol internally to tag a file without notifying the
user. 1It's otherwise an invalid protocol though: users are not not able to
specify it.

To validate a download protocol code, you can use valdpc():

ok=valdpc(prot); Is this a valid download protocol?
int ok; l=valid, O=invalid
char *prot; protocol code string

The return value of ftgsbm() tells you whether or not FTF has taken control
of your session.

ftgsbm() returns 0 in these cases:

ftgsbm(anything), after ftgnew() has returned 0, outputs a warning

ftgsbm("T") tags a file for download & notifies the user

ftgsbm("TQ") silently tags a file for download

ftgsbm(protocol) when your TSHVIS routine reports that your file is
invisible (in this case, ftgsbm() calls your TSHFIN exit-point)

ftgsbm() returns 1, and changes usrptr->state,substt in these cases:
ftgsbm("?") changes state/substt to prompt for protocol/cptions
ftgsbm(protocol) changes state/substt to proceed with download
ftgsbm(trash) rebuffs, and then does the same thing as ftgsbm("?")

DEV-122 Galacticomm

Here’s what you can count on:

If ftgsbm() returns 1, then it has changed the usrptr->state, and
either TSHFIN or TSHHUP will get invoked exactly once eventually.
If ftgsbm() returns 0, then usrptr->state and usrptr-»>substt have
either not been changed, or already restored by the TSHFIN exit
point of your download handler routine.

Tagspecs

A tagspec is a 17-byte application-specific structure for keeping track of
each file downloaded. Its main purpose is to allow file tagging, where a
user identifies a file for download at some later time. But all files that
are downloaded use tagspecs, even if they aren’t explicitly tagged.

These 17-byte tagspecs were designed as small as possible so that users
could have room to tag numerous files without wasting large amounts of
memory. There’s just enough room for a 4-byte pointer and a 12-character
file name plus its NUL terminator. The 4-byte pointer could be used to
refer to some directory, Forum, Library, category, or other structure
somehow. For example, you could store a 32-bit absolute database pointer
here. You can use any format you need for the 17 bytes, as long as you keep
in mind the asynchronous nature of file tagging (identifying the file now,
downloading it later).

You must take special care that your application can handle file tagging
before you set the FIGABL (tagable) flag in ftgptr->flags (see step 5
above). For one example of a disaster waiting to happen, suppose you store
the 12-character file name in the tagspec, and a 60-character path prefix in
your Volatile Data Area. In some of your download handler exit points
(TSHVIS, TSHBEG and possibly TSHSCN and others) you assemble these two
things together to get the DOS path for the file. This will work just dandy
if the user never tags these files.

But if you set ftgptr->flags|=FTGABL and the user picks "T" to tag a file in
your module, you're probably in for big trouble. For cne thing, if he tags
two files from different directories, and then downloads them both, they
will both use the path prefix meant for the second file. For another, the
user may be off in some other module, with entirely different data stored in
the Volatile Data Area, when he gets around to downloading his tagged files
Then when your download handler routine gets called, and goes to the
Volatile Data Area for that 60-character prefix, something rather unexpected
may be there in its place. This is the worst kind of bug to have on your
hands -- intermittant cause and unpredictable effect.

Possible corrections to this kind of bug are either to find somewhere else
to store the path prefix, or to rethink the strategy. You could store the
path prefix in a database and store a database pointer in the tagspec.

Or perhaps you could restrict your application to using the same path prefix
for all files. If you were desperate to give users the ability to tag up
to MAXTAGS number of files, each with an arbitrary path prefix, then your
application could allocate a monster 3D array, 61 bytes by MAXTAGS by
nterms, and store all the path prefixes there.

Developer’s Guide DEV-123

Download Handler Routine

This routine is a collection of "exit points" for all the application-
specific tasks that need to be done during the general-purpose downloading
session. See page 108 for a discussion of the concept of exit points as
regards the upload handler routine.

This pseudo-code template roughly outlines the tasks expected at each of the
exit points.

int

tshxx(/* Handle the application-specific */

int tshcod) /* aspects of your downloads *f

{ /* (tshcod=code for each aspect) */
int rc=0;

setmbk(whatever your application uses);
{be sure to set any other appropriate globals)
sWitch(tsheed) {

case TSHDSC: /* Describe the file(s) in English */
sprintf(tshmsg,"app-specific description of file", ftgptr->tagspc);
break;

case TSHVIS: /* Visible to this user? o

if (file exists, or user is allowed to know it doesn't) (
open & read first TSHLEN bytes into tshmsg, as in:
if ((fp=fopen("'<DOS path for the file>" FOPRB)) 1= NULL) {
fread(tshmsg,1, TSHLEN, fp);
re=1;
H
>
break;
case TSHSCN: /* Break down multiple filespec oy
if (there's at least one file in this multi-file tagspee) €
store tagspec for the individual file in tshmsg
re=1;
3
break;
case TSHNXT: /* Next file in multi-file spec *
if (there are more subfiles) (
store tagspec for the individual file in tshmsg
re=1;
3
break;
case TSHBEG: /* Begin downloading this file "7
if (file can't be downloaded by this user) {
sprintf(tshmsg,"You can't download the file because...");
else {
reserve it
sprintf(tshmsg,"<D0S path for file>", ftgptr->tagspe);
strepy(ftfschb->fname,"<file name for the protocol>");
re=1;
3
break;
case TSHEND: /* File download was successful e
unreserve it
record a completed download
break;
case TSHSKP: /* This file download aborted */
unreserve it
record an aborted download
break;
case TSHFIN: /* End of downloading session */
usrptr->state=your state
usrptr->substt=your substate
promgt (you don't need to call outprf here)

re=1;
break;
case TSHHUP: /* Channel hanging up b7
the TSHFIN exit point never got called, clean up as req'd
break;

3
return(rcy;

DEV-124 Galacticomm

This code is available on the Galacticomm Demo System, (305) 583-7808. You
may want to download it and use it as a template to write your own download
handler routine.

The global variables usrnum, usrptr, usaptr, and vdaptr are available for
all exit points of the download handler routine. In addition, these FIF
variables are available:

struct ftfscb *ftfscb; Session Control Block (see FTF.H) for the
current file transfer session

struct ftfpsp *ftfpsp; protocol specifications (see FTF.H) for the
current file transfer session

struct ftg *ftgptr; current tag table entry

ftgptr->tagspe current tagspec

char *tshmsg; multi-purpose buffer (context-dependent)

If you need any other global variables, be sure to set them up in your
routine. The meaning of your routine’s return value depends on the type of
exit point (which is coded in tshcod). These will be discussed individually
for each exit point. In some cases, no return value is expected. You
should return 0 in each of those cases to allow for future expansion.

TSHDSC - Describe the file(s) in English

Format a description for the single file or multiple files in the tshmsg
buffer. You should word the description so that it locks right when
following the word "the", as in "Do you want to download the %s (y/n)z"
(see offline Text Block SRETRYV).

The tagspec you originally submitted is in ftgptr->tagspc. This exit-point
must work with a multi-file tagspec, as well as the single-file tagspec’s
that you’ll be breaking it down into. The return value doesn’t matter, but
it’s a good practice to return 0 for future expansion.

TSHVIS - Visible to this user?

Is this file visible? Return l=visible to user, or O=not visible.

This exit-point should handle multi-file tagspecs (which are not now checked
for visibility, but may be in future versions) as well as single-file
tagspecs. Return 1 if the user is allowed to know whether this file exists.

The purpose of this exit point is to allow you to decide to totally restrict
access to a given file, to the point where certain users don't even know it
exists. It also allows you to break-down multi-file tagspecs in TSHSCN and
TSHNXT without doing any security checks.

If the file is visible, read the first TSHLEN bytes (80 bytes) into the
tshmsg buffer. This will allow tests for a compressed file, such as a .ZIP
file, to know whether or not to present the user with the "V" protocol
choice. If you don’t read in the first TSHLEN bytes of this file, then the
"V" protocol will never be available.

Developer’s Guide DEV-125

TSHSCN - Break down multiple filespec

If you submit a multi-file tagspec (by setting ftgptr->flags|=FTGHLD), then
you’ll be asked to break it down into single-file tagspecs when the time
comes for downlocading.

If the multi-file tagspec refers to one or more files, then return 1 and
store the tagspec for the first file in the tshmsg buffer. Return 0 if the
multi-file tagspec ends up referring to no files at all. You can also
return 2 to indicate that there may be files available, but that you aren’t
supplying a tagspec in tshmsg yet -- you’ll do that in TSHNXT.

TSHNXT - Next file in multi-file spec

This continues the work that TSHSCN started. Return 1 if there are more
single-file tagspecs, and store the next one in tshmsg. Return 0 if there
are no more files. Return 2 if there may be more files, but you want to be
called again to make a tagspec out of them. This may help simplify certain
multi-file breaking-down schemes.

See the example module scurce code starting on page 131 for a way to do
TSHSCN and TSHNXT with fndlst() and fndnxt() (see page 183 about the
routines themselves). For your convenience, ftuptr->fb is a user-specific
"fndblk" structure that you can use with fndlst() and fndnxt() in this
context.

TSHBEG - Begin downloading this file

Verify that the user is allowed to download this file. If not, put a reason
in tshmsg (a complete sentence, as in "You don’t have access rights to that
file.") and return 0.

Here are some things you might check for:

Does the file name have the proper syntax?

Does the file name conflict with a reserved name?

Does the user have permission to download this file?

Are too many users opening files at once (thereby using up all file
handles)?

Can this user afford the download charges, if any?

o Is another user currently modifying/uploading/deleting this file?

oO0o0O0

o

1f downloading is OK, store the DOS path for the file in tshmsg and return
1. 1In case this protocol can communicate file names, put the file name into
ftfscb->fname. For example, if downloading with ZMODEM, this file name will
be the one used on the user’s terminal. It doesn’t have to be the same as
the one used on the BBS, but it usually is.

There is another special option in the TSHBEG exit point. You can return -1
to indicate "the file is not yet available for download, but it will be
later". The file won’t be downloaded during this download session, but it
will remain tagged for download, and can be downloaded later. This is used to
accomodate files that are not instantly available, such as those on a
multi-disk CD ROM drive (as opposed to those that are, such as on your hard
disk).

DEV-126 Galacticomm

TSHEND - File download was successful

You may wish to record the download, or charge the user for it at this
point. Use this exit point to cancel whatever reserving was done in the
TSHBEG entry point. For example, if you had some scheme for preventing the
Sysop from deleting this file while this user was downloading it, now's the
time to recognize that it’s OK to delete the file. The return value doesn’t
matter, but it's a good practice to return 0 for future expansion.

You can count on the fact that for every TSHBEG call there will be exactly

one TSHEND or TSHSKP call. The only exception would be a very abrupt
termination like a power-loss.

TSHSKP - This file download aborted

Here you'll need to Gu the same "unreserving" that is done in the TSHEND
exit point. You may also wish to make some record of the aborted download.

TSHFIN - End of downloading session

This is the most important exit point -- the one where FTF turns control
back over to your application. Be sure to restore your usrptr->state and
usrptr->substt, and prompt the user for what comes next.

If your application supports file tagging, you should recognize that TSHFIN
only means that the file transfer service is done controlling this user’s
session for the moment. The user may still cause your your download handler
to get called for this same tagspec later, with any of the cases except
TSHFIN and TSHHUP. This could happen for example when the user tries to log
off, and is given a chance to download all files that he has tagged.

In ftfscb->actfil you’ll find a count of the total number of files
successfully downloaded. 1In ftfscb->tryfil is the total files that we
tried to download. Of course it’s always the case that actfil <= tryfil.
When actfil < tryfil, not all the files made it. The user has already seen
a report about this, including why the last transfer aborted, or why the
last of possibly several files were skipped.

Since you're taking back control of this channel, it’s up to you to set
things straight for what’s up next for this user. Here are two
alternatives:

You want control back You want to return to the parent menu
0 Restore your usrptr->state o Restore your usrptr-»state
© Restore your usrptr->substt o Say bye to the user if you wish (you
o Prompt the user (you don’t don’'t need to call outprf())
need to call outprf()) o Return 0
© Return 1

Either way, if you're prompting or saying goodbye using prfmsg(), you need to
be sure to set your message block pointer using setmbk().

Developer’s Guide DEV-127

The pseudo-code for TSHFIN handling on page 124 assumes you want to take
control back. Here's an alternative of the TSHFIN exit point to allow you
to exit to your module’s parent menu page:

case TSHFIN: /* End of downloading session e i
usrptr->state=your state
prompt (exiting); /* (don't call outprf()) */
rc=0;
break;

This may be appropriate if your module really doesn’t want to regain control
of the channel when the download is done. 1In this case you only need to
restore the user’s state code (module number), not the substate. Your
module never actually regains control of the user’s channel. You can prompt
him with some parting words, but you don’t need to. For consistency you
should do whatever you normally do when the user exits from your module to
the parent menu.

In the case where you're supposedly retaking control, you may have to call
condex(), and possibly wind up returning control to your parent Menu Tree
menu afterall. This would be the case if you were about to return to your
module’s own internal main menu, and you found out you had gotten where you
are through command concatenation. See page 78 about this whole condex()
business.

Another handy feature of the file transfer service is that each ftgsbm()

invocation that returns 1 is followed (eventually) by exactly one TSHFIN or
TSHHUP exit point invocation, except in dire cases (power loss for example).

TSHHUP - Channel hanging up

Use this exit point to clean up your affairs in case the user hangs up or
the channel disconnects while the user is in the download session. This
only occurs in place of a TSHFIN, and will probably not be called if one of
your files is tagged for download and the actual download is interrupted by
a disconnect. In that case, TSHFIN had long since been called, after the
user tagged the file.

If a disconnect occurs in the middle of downloading a file the user didn’t
tag for download (he asked to download it immediately), then a TSHSKP exit
point will be called first, to properly terminate the download, before
TSHHUP is called.

See the discussion on the upload handler exit point FUPHUP on page 113

about making sure your module’s cleanup code executes exactly once for users
in your module.

DEV-128 Galacticomm

Downloading Example #1

¥ ek ko ek Ak ek ok o ok ok ok sk s Je e e R R e ek e e e e Rk
* *
- GALDNX.C *
* *
* Copyright (C) 1994 GALACTICOMM, Inc. ALl Rights Reserved. ’
* *
* Downloading example. *
* *
* - R. Stein 12/6/93 x
* *

*x o sk o o kkk

#include "gcomm.h"
#include "majorbbs.h"
#include "filexfer.h"

STATIC int dnlinp(void);
STATIC int tshdnl(int tshcod);

int dnlstt; /* Downloading module state number */
struct module d'ﬂmodule=("",NULL,d‘\linp,dfsthn,NULL,NULL,NULL,NULL,NULL,NULL);
void EXPORT

init__downloader(void) /* Downloader initialization */
4

stzepy(dnlmodul e.descrp, gmdnam("GALDNX. MDF ") MNMS1Z);
dnistt=register_module(&dnlmodule);

3
STATIC int
dnlinp(veoid) /* Downloader input handler wf
{
int rc=1;
switch (usrptr->substt) {
case 0:
pri("Name of file to download: ");
usrptr->substt=1;
break;
case 1:
if (marge == 0)
re=0;
b
else if (ftgnew() == 0) ¢
ftgsbm(""); /* use warning feature of ftgsbm() */
re=0;
b
else (
stzepy(ftgptr->tagspe,margv[0], TSLENG);
ftgptr->tshndl=tshanl;
ftgsbm("?m);
b
>
outprf (usrnum) ;
return(rc);
>
int
tshdnl(/* Handle the application-specific */
int tshcod) /* aspects of your downloads)
{ /* (tshcod=code for each aspect) */
int re=0;

switch(tshcod) (

case TSHVIS: /* Visible to this user? *yr
re=1;
break;

case TSHDSC: /* Describe the file(s) in English */
sprintf(tshmsg,"file %s", ftgptr->tagspe);
break;

case TSHBEG: /* Begin downloading this file wif

sprintf(tshnsg.“DNLDIR\\%S",ftgptr-:tagspc);
strepy(ftfscb->fname, ftgptr->tagspe);
re=1;
break;
case TSHFIN: /* End of downloading session *
usrptr->state=dnlstt;

Developer’s Guide DEV-129

3}
return(rc);
¥

This simple module allows users to download files from the DNLDIR
subdirectory of the BBS. Users of this service type in a.file name (that
they must know somehow), and choose a protocol to download it.

init downloader ()

This routine registers the downloading module using the description in the
GALDNX.MDF file.

dnlinp()

This routine handles text line input from the user after he selects this
download service. Upon entry, the user is prompted for the file name. If
he types RETURN, he’s returned to the parent menu page without any
downloading. If there is no room to download any more files because the
user’s tag table is completely full, then the user is notified (ftgsbm()
does this) and he’s also returned to the parent menu.

Otherwise, the tagspec structure is simply the file name, and it’s copied to
the tagspec in the current tag table entry that ftgnew() identified for us.
Neither the FTGWLD nor FTGABL flags are set, indicating that these will be
single-file non-taggable downloads. The call to ftgsbm() turns control over
to the file transfer service and a list of protocols is presented to the
user.

tshdnl ()

The TSHVIS exit point declares that all files are visible if they exist.

The description for the file will be "file <filename>". In the TSHBEG

exit point the path and protocol names are passed to FTF, There are no
TSHEND, TSHSKP, or TSHHUP exit points coded, because they only need to
return 0 and do nothing else. TSHFIN restores the usrptr->state and returns
0, telling FTF to return control to the parent menu.

Potential Improvements to Download Example #1

Here are some of the features left out of this brief example that you should
consider if you are using downloads in your application:

viewing the contents of compressed files, such as .ZIP files
Multiple-file downloads

Checking for conflicts between the file name and DOS devices
Checking for attempts to download files like DNLLIB\..\BBS.BAT
File tagging

Concatenated commands

Allowing "X" to exit

Telling the user what files are available in the directory
Sysop-configurable prompts an .MSG file

Sysop-configurable download directory

Full module structure in source code, with comments

00000000000

All of these features are included in download example #2.

DEV-130 Galacticomm

Downloading Example #2

/ * o
* *
* GALDNX2.C *
- -
* Copyright (C) 1994 GALACTICOMM, Inc. ALl Rights Reserved. *
- *
* Downloading example. d
* *
* - R. Stein 12/6/93 *
* -

o e o *hRRR

#include "gcomm.h®

#include "majorbbs.h™

#include "filexfer.h®

#include “galdnx2.h"

STATIC int dnlinp(void);

STATIC int fllist(void);

STATIC int tshdnl(int tshcod);

STATIC void dnlfin(void);
int dnlstt; /* Downloading module state number *f

static FILE *dnlmb; /* file pointer for GALDNX2.MCV o

char *dnldir; /* DNLDIR download directory wr

struct module dnlmodule={ /" module interface block o

", name used to refer to this module */
NULL, /* user logon supplemental routine */
dnlinp, P input routine if selected et 4
dfsthn, ™ status-input routine if selected */
NULL, Vid "injoth" routine for this module */
NULL, * user logoff supplemental routine */
NULL, Vil hangup (lost carrier) routine *f
NULL, P midnight cleanup routine */
NULL, Y ind delete-account routine */
dnlfin /* finish-up (sys shutdown) routine */

X

void EXPORT
init__downloader(void) /* Downloader initialization */

{

stzcpy(dnlmodul e.descrp, gmdnam("GALDNX2.MDF") ,MNMSIZ);
dnlstt=register_module(&dnlmodule);
dnlmb=opnmsg("GALDNX2 .MCV"") ;

dnldir=stgopt(DNLDIR);

)

STATIC int

dnlinp(void) /* Downloader input handler *f

{

int rc=1;
setmbk (dnlmb);
if (margc == 1 & sameas(margv[0],"X")) {
return{0);
b}
do {
bancnc();
switch (usrptr->substt) (
case 0:
cncchr();
if (1fllist()) {
cncal L();
re=0;
bl

prfmsg{usrptr->substt=FLNAME);

break;

Developer’s Guide

DEV-131

case FLNAME:

cncall();

parsin();

if (margc == 0 || sameas(margv(0],"?")) (
fllist();
primsg(FLNAME);

else if (rsvnam(margv[0])
strchr{margv[0],':') I= NULL
strchr(margv([0],'\\') I= NULL
strstrimargv[0],"..") = NULL) {

prfmsg(FLRSV);
primsg(FLNAME);
X
else if (ftgnew() == 0) ¢
ftgsbm(""); /* use ftgsbm() to say out-of-tags */
re=0;
>
else (
stzcpy(ftgptr->tagspc,margv [0] «TSLENG);
ftgptr->tshndl=tshdnl ;
ftgptr->flags=FTGABL;
if (strchrimargv[0],'?') 1= NULL
[| strehr(margvio], '*') 1= NULL) ¢
ftgptr->flags|=FTGWLD;
re=ftgsbm(marge > 1 ? margv[1] : el A 1
>

b
} while (lendenc());
outprf(usrnum);

return{rc);
2
STATIC int
fllist(void) /* Display listing of files *
b
struct fndblk fb;
if (U fndlst(&fb, spr("is*.* dnldir),0)) ¢
prfmsg(FLNONE) ;
return(0);
)
primsg(FLHEAD);
do {
prfmsg(FLLlNE,fb.name,t2as(fb.size],ncdate(fb.date),nctime(fb.tim));
> while (fndnxt(&fb));
return(1);
3}
int
tshdnl(/* Handle the application-specific */
int tshcod) /* aspects of your downloads b ¢
L /* (tsheod=code for each aspect) */
int re=Q;
FILE *fp;
setmbk (dnimb);
switch(tshcod) (
case TSHDSC: /* Describe the file(s) in English */
sprintf(tshmsg,"file #s", ftgptr->tagspe);
break;
case TSHVIS: /* Visible to this user? LY
if (ftgptr->flags&FTGWLD) (4
rc:fnd1st(&ftuptr->fb,ftgptr->ta93pc,0J;
break;
if ((fp:fopen(spr("%s%s",mldir,ftgptr-)tagspc),FOPRB)) '= NULL) {
fread(tshmsg, 1, TSHLEN, fp);
re=1;
3
break;
case TSHSCN: /* Break down multiple filespec */
if (fncﬂst(&ftuptr->fb,spr("%s‘.’(s",dnldir,ftgptr-ﬂagspc),ﬁ)) {
strepy(tshmsg, ftuptr->fb.name);
rc=1;
3
break;
DEV-132

Galacticomm

Here

case TSHNXT: /* Next file in multi-file spec
if (fndnxt(&ftuptr->fb)) ¢
strepy(tshmsg, ftuptr->fb.name);
re=1;
¥
break;
case TSHBEG: /* Begin downloading this file
sprintf{tshmsg, "%s¥%s",dnldir, ftgptr->tagspc);
strepy(ftfscb->fname, ftgptr->tagspe);

re=1;
break;
case TSHFIN: /* End of downloading session
usrptr->state=dnlstt;
return(rc);
3
STATIC void
dnlfin(void) /* Finalize downloading example
€
clsmsg(dnlmb);
¥

are the CNF options for download example #2:

LEVELS (3

This is the directory for the files to download.
Be sure to specify a proper path PREFIX (e.g.
ending with a backslash, or whatever)

DNLDIR {DNLDIR\} S 0 Download directory:
LEVELS (O

FLHEAD (<ESC>[0;1;32m

Files available:

} T Download example 11 file Llisting header

FLLINE {<ESC>[0;1;36m%-12.12s<ESC>[33m %10s %8s %-5.5s
} T Download example I1 file listing Line

FLNONE {<ESC>[0;1;35m
No files are available for download.
} T Download example 1 no files available

FLNAME (<ESC>[0;1;36m
Name of file(s) to download: } T Download example I1 file name prompt

FLRSV {<ESC>(0;1;35m
That's not a valid file name
} T Download example 11 file name invalid

*!

*/

*/

4

This code, plus support files, is available for download on the Galacticomm
system in the file GALDNX2.ZIP. (Note: <sc> represents the ASCII
escape code '\x1B’.)

Demo

Developer’s Guide

DEV-133

Here's what the module would look like online:

TOP (TOP)
Make your selection (T,1,F,E,L,A,P,R,D,0,WU,N,S,? for help, or X to exit): D

Files available:

LOADER.BAT 1524 11/26/93 20:00
DPATCH.ZIP 57001 12/07/93 12:26
GALCONDL.ZIP 4162 12/07/93 16:05
DINSTALL.BAT 237 12/02/93 13:31

Name of file(s) to download: *.ZIP

L ... Listing (a screen at a time) 2 ... ZMODEM

A ... ASCII (continuous dump) ZR... ZMODEM (resume after abort)
B ... YMODEM Batch K ... Kermit / Super Kermit

G ... YMODEM-g

T ... Tag file(s) for later download

(Add '!' to automatically log off when done)

Choose a download option (or 'X' to exit): Z
(Hit Ctri-X a few times to abort)

Beginning ZMODEM download of the file *.BAT
rz

**B0000000000000

(downloading takes place)

% DOWNLOAD COMPLETE *

TOP (TOP)
Make your selection (T,I,F,E,L,A,P,R,D,0,W,UN,S,? for help, or X to exit): _

init downloader()

This function registers the GALDNX2 module, opens the GALDNX2.MCV file, and
reads in the Sysop-configured download directory prefix.

dnlinp()

This text-line input handling function returns to the parent menu if the
user enters "X" and otherwise uses command concatenation routines to parse
user input. When a user enters this module he’s given a list of the files
available (more on fllist() below), and asked to type in the name of a file,
or file specification with wildcards, to download.

If he replies with "?" he's given the list of files again. If the name he
gives is reserved, like "CON.TXT", then he is warned and reprompted for a
file name.

An entry in the tag table is obtained, if available, by ftgnew(). 1In this
example, the use of wildcard characters ’2?’ or ’'*’ in the file name
signifies a multi-file download, and the FTGWLD flag is set. The FTGABL
flag is always set. If the user concatenated a protocol code after his
file specification, that is passed to ftgsbm(). Otherwise, a list of
protocols is requested. FTF will handle invalid protocol codes with a
warning and a list of the available codes.

DEV-134 Galacticomm

fllist()

This function scans through the files in the download directory and lists
them on the user’s terminal, with file size, date, and time.

The size of the output buffer (offline Hardware Setup option OUTBSZ)
effectively limits the number of files that can be put online for download.
With OUTBSZ set to 4096, you can probably handle somewhere around 100 files.
Much more than that, and the output buffer will overflow.

tshdnl()

Here the description is the same simple "file <filename>". Multi-file
tagspecs are "visible" if any matching files exist. Single-file tagspecs
are visible if the file can be opened, and if so, the first TSHLEN bytes are
read in so the "V" protoccl can be supported.

The TSHSCN and TSHNXT exit points use the classic technique for breaking
down multi-file tagspecs into single files: £ndlst() and fndnxt(). In each
case a single-file tagspec (the file name) is copied into tshmsg.

There are no security restrictions on the files in the download directory.
In the TSHBEG exit point, the path is constructed in tshmsg, and the
protocol name is copied to ftfscb->fname.

The TSHFIN exit point just restores the state code and returns 0, indicating

that control should return to the download module’s parent menu page when
downloading is complete.

Developer’s Guide DEV-135

File Transfer Protocol

To define a file transfer protocol for The Major BBS:

1.

DEV-136

Define a file transfer protocol specification structure. Here
is an example of the structure for XMODEM-CRC downloads.

struct ftfpsp ftpxex=({

NULL,

ngn,

WXMODEM- CRCY,
FTFXMT+FTFXTD,
sizeof(struct xymdat),
3*16, /* .byttmo
10*16, /* .paktmo
10, /* .retrys
T /* owindow
128, /* .paksiz
xyxini, /* .initze()
XCXsrt, J* .start()
xyxctn, /* .contin()
xyxinc, /* .hdlinc()
NULL, /* .hdlins()
ftfabt, /* .term()
ftfxca, /* .abort()
ftfinbe, /* .hdlinb()
i /* .secur

£0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

bH

/* XMODEM-CRC transmitting *//

/* 1-3 code letters for protocol */

/* name of protocol */

/* protocol capability flags */

/* total length of session control block */
default byte timeout */

default packet timeout */

default max retries */

max window size (packets/bytes as appropriate) */
packet size O=auto-figure */

Initialize this protocol (recompute scblen) */
Start a transfer */

Continuously call, 1=more, D=done */

Handle one incoming byte */

Handle incoming line of text */

Initiate graceful termination of transfer */
Immediately unconditionally abort the transfer */
Handle an array of incoming bytes */
App-specific security of some kind */

Here are the protocol capability flags:

/*--- File Transfer Protocol Capability and Characteristic Flags ---*/

#define FTFXMT 0x01
#define FTFASC 0x02

#define FTFMUL 0x04
#define FTF7BT 0x08
#define FTFASF 0x10

#define FTFAFN Ox40
#define FTFXTD 0x80

/* Transmit protocol (versus receive) */

/* ASClI-session (versus binary-session) */

/* where '\r' is the sole line terminataor */

/* note: ASCII sessions do not detect errors */
/* capable of multiple files? */

/* capable of using 7-bit data path? */

/* ASCI1-file (versus binary-file) */

/* where '\n' is the sole line terminator */

/* abort is final, don't ask "try again?" */

/* extended ftfpsp structure (flags2 & hdlinb) */

See FTF.H for more details. See FTFXYMD.C for the full

implementation of XMODEM.

See FTF*.C for examples of the

implementation of other file transfer protocols. The 'F’ file
import/export file transfer "protocol" is implemented in
FILEXFER.C with lots of cheating.

Register the structure in your init_ xxx() routine using

ftplog():

ftplog(fptr);

where fptr is a pointer to the structure from step 1. The
new protocol will appear in the appropriate lists with all the

other protocols.

Galacticomm

6. OPERATOR INTERFACE

Video Output (printf())

Every DOS program that has any need for speed must write directly to the
video screen memory. Our method is to replace the standard library version
of the "printf()" function with our own. We also provide windowing, cursor
positioning, colors, invisible screen-image updating (so that, for example,
we can update both the main conscle and two channel emulation screens
simultaneocusly), and a few other miscellaneous functions. All of these
routines are available in GCOMM.LIB.

printf(ctlstg,pl,p2,...,pn); substitute for standard printf()

char *ctlstg; control string, functions
supported are %s,%c,%d,%u,$x,
all of them with field len,
zero or blank fill, left/right
justification options.

TYPE pl,p2, .o PH; just like printf/cprintf parms.
(note: no "longs" or "floats")

There is no limit to the number of parameters (pl,p2,...,pn) than you may
pass to printf(). They should correspond one-for-one with the "%"
directives in the control string. See page 141 for a description of the ANSI
graphics capability of printf().

setatr(attrib); sets video attributes

int attrib; attribute code: sum of...
0x80 = blink foreground
0x40 = red background
0x20 = green background
0x10 = blue background
0x08 = bright foreground
0x04 = red foreground
0x02 = green foreground
0x01 = blue foreground

Developer’s Guide DEV-137

Another way to compute the attribute is to add together three numbers, one
from each of these columns:

Foreground Attribute + Background Attribute + Blink

0x00 Black 0x00 Black 0x00 non-blinking
0x01 Dark blue 0x10 Dark blue 0x80 blinking
0x02 Green 0x20 Green foreground
0x03 Cyan (blue-green) 0x30 Cyan (blue-green)

0x04 Red 0x40 Red

0x05 Magenta (purple) 0x50 Magenta (purple)

0x06 Brown 0x60 Brown

0x07 Grey 0x70 Grey

0x08 Dark Grey

0x09 Bright blue

0x0A Bright green

0x0B Bright cyan

0x0C Bright red

0x0D Bright magenta (pink)
0x0E Bright yellow

0x0F Bright white

This function affects subsequent printf()’s. You can change the background
color of the entire screen, for example to magenta, by coding:

setatr (0x5E);
pr 1ntf ("\f") ;

Then all subsequent printf()’s will show bright yellow on magenta. The
clreol() function also sets the background color for the remainder of the
line according to the latest setatr() attribute.

See page 142 for converting IBM screen attribute codes into ANSI
color coding sequences.

See page 164 for what setatr() does on monochrome screens.

setwin(sen,xul,yul ,xlr,ylr,sen); set window parameters

char *scn; seg:0ff start addr of screen
(if NULL, default display)
int xul; upper left x coord
int yul; upper left y coord
int xlr; lower right x coord
int ylr; lower right y coord
int sen; scroll enable (l=yes)
rstwin(); restore previous window parameters

The setwin() function defines a window on the screen. All coordinates are
inclusive (they are inside the window). The "scn" parameter can be used to
direct all subsequent screen output to a SCNSIZ-byte buffer (SCNSIZ is 4000)
instead of to the visible video memory. Make "scn" NULL for the default
condition of writing directly to video memory. The "sen" parameter, when 1,
means that when you printf() a newline (’'\n') on the last line of the
window, the entire window gets scrolled up one line (and the bottom line is
filled with the current setatr() background attribute). W®hen "sen" is 0,
then a newline has the same effect as a carriage return ('\r’) on the bottom
line of the window. The rstwin()} function undoes the effect of the most
recent setwin() call.

DEV-138 Galacticomm

scnstt=frzseg(); get video ram base address
char *scnstt; seqg:off start addr of screen

unfrez(); release video ram address (in a
multitasking environment).

The frzseg() function returns a pointer to the physical video memory (or in
some multitasking environments, to the "hidden" screen).

The unfrez() function releases the memory indicated by frzseg() (that is, the
"scnstt" return value of frzseg() should not be used after calling unfrez()).
This is only required in certain multitasking environments that permit
writing directly to screen memory. Even so, since printf() calls both
frzseg() and unfrez() (when the first parameter in the most recent call to
setwin() was NULL), you may not need to call unfrez() at all -- just wait
until the next printf().

To blank out a SCNSIZ-byte screen buffer area:

scblank (buffer,attr); Blank the screen buffer memory
char *buffer; SCNSIZ-byte buffer (4000 bytes)
char attr; Attribute to use

2000 spaces with the specified attribute are written to the buffer.

scnstt=auxcrt(); get auxiliary CRT address

char *scnstt; pointer to auxiliary screen address
locate (x,y); move cursor to x,y

int x; dest x (O=left-most column)

int y; dest y (O=top line)

rstloc(); restore previous cursor location
X=curcurx(); get current cursor x coordinate

int x;

y=curcury(); get current cursor y coordinate

int y;

The locate() function moves the video cursor to a new location. Even if
setwin() has directed video output to an invisible buffer, the visible
cursor may still move to track the locate() function (see cursact() on

page 140). The rstloc() function undoes the effect of the most recent
locate() call. Ball cursor positions are relative to the upper left corner
of the display buffer (not to the upper left corner of the setwin() window).

clreol(); clear to end of line (in window)
This function clears from the cursor position to the right margin of the

current window, setting the background attribute for this line segment to the
current setatr() attribute.

Developer’s Guide DEV-139

printfat(x,y,ctlstg,pl,...,pn); combination of locate{) and printf()
into one routine (saves code space)

int x,y; screen coordinates
char *ctlstg; control string
ol R . o] parameters (max 8 bytes)

This routine is just like printf(), except that the control string is preceded
by a screen position. The parameters (pl,...,pn) can be no more than 8 bytes.

The following routines are like printfat(), except you can set an origin and
specify offsets:

proff (xbase,ybase); set origin for prat() locations

int xbase,ybase;

prat(x,y,ctlstg,pl,...,pn); combination of locate() and printf()

int x,y; screen coordinates (relative to
the most recent proff() setting)

char *ctlstg; control string

Dy ewupnl parameters (max 12 bytes)

The explode() family of routines (page 162) calls proff() to set the upper
left corner of the exploded region. Then the choose() family (page 166) and
edtval() (page 164) routines use prat() so that their coordinates are
relative to the upper left corner of the exploded region.

cursact (movit) ; enable moving of blinking cursor
int movit; l=move blinking cursor, O=still

This routine selects whether the locate() routine will move the actual visible
cursor or not. Whatever you pass to cursact(), locate() will still select the
location written to by printf(), etc. But with cursact(0), the blinking
cursor will remain stationary. cursact(1l) is the default condition.

belper (pitch); beep the operator console
int pitch; O=silent 200-1000 high-low pitch

This routine defines the handling of printf() when sending an ASCII BEL

character to the operator console. This will probably be a much shorter beep
than DOS uses. For example:

belper(200);

printf("\7"); /* high-pitched beep */
belper(1000);

printf("\7"); /* low-pitched beep */
belper(150);

printf("\7"); /* very high-pitched beep */
belper(0);

printf("\7"); /* silent */

The belper() routine is used in The Major BBS to set the signup notification

(SGNBEL), the page-sysop warning (SOPBEL), and the emulation screen beep
(EMUBEL) .

ansion(on); enable/disable ANSI graphics
int on; l=process ANSI graphics sequences
O=ignore ANSI graphics sequences
(display as literal)

DEV-140 Galacticomm

This function turns on or off the interpretation by printf() of ANSI graphics
characters embedded in the text stream. The following ANSI commands are
supported when ansion(l) (the non-default condition) is in effect:

<ESC> [<row> ; <column> H Move cursor to <row>,<column>
<ESC> [<row> ; <column> f Move cursor to <row>,<column}>
<ESC> [<nrows> A Move cursor up <Nrows> rows
<ESC> [<nrows> B Move cursor down <Nrows» rows
<ESC> [<ncols> C Move cursor forward <ncols> columns
<ESC> [<ncols> D Move cursor backward <ncols> columns
<ESC> [s Save cursor position

<ESC» [u Restore cursor position

<ESC> [2 J Erase display

<ESC> [K Erase to the end of the current line
<ESC> [O m Normal display attribute
<ESC> [1 m Bold display attribute

<ESC> [4 m Underscore display attribute
<ESC> [S5 m Blink display attribute

<ESC> [T m Reverse display attribute
<ESC> [8 m Invisible display attribute
<ESC> [30m Black foreground

<ESC> [31 m Red foreground

<ESC> [3 2 m Green foreground

<ESC> [33 m Yellow foreground

<ESC> [34 nm Blue foreground

<ESC> [35 m Magenta foreground

<ESC> [3 6 m Cyan foreground

<ESC> [37 m White foreground

KESC> [40 m Black background

<ESC> [4 1m Red background

<ESC> [4 2 m Green background

<ESC> [4 3 m Yellow background

<ESC> [4 4 m Blue background

<ESC> [4 5 m Magenta background

<ESC> [4 6 m Cyan background

<ESC> [4 7 m White background

Notes

None of the above commands include any spaces.
<ESC> the ASCII escape code '\x1B’.

<row> one or two ASCII digits representing the screen row, between
1 and 25. Defaults to 1 if omitted.

<column> one or two ASCII digits representing the screen column, between
1 and 80. Defaults to 1 if omitted.

<nrows> one or two ASCII digits representing the number of screen rows,
between 1 and 25. Defaults to 1 if omitted.

<ncols> one or two ASCII digits representing the number of screen
columns, between 1 and 80. Defaults to 1 if omitted.

The ";" may be omitted if the <column> parameter is omitted.

Developer’s Guide DEV-141

The "m" commands (display attribute) may be combined using semicolons. For
example:

CESC> [1m <ESC> [33 mM<ESC> [45 m
has the same effect as:
ESC> [1 ;33 ;45m

Both of these set the display attribute to bright yellow on magenta. You
could use the following code to display a message with these settings in the
current display window:

printf("\33(1;33;45mfafer yield for the 128 MHz 80586: 95%");

The individual characters of the above commands may be split across
different calls to printf(). There may even be intervening calls to
printf() as long as the intervening calls have ansion(0) (ANSI graphics
disabled). Also, the display attribute is preserved across calls to
setatr() when ansion(0). All of these features enable the emulation of a
single user’s channel with ANSI graphics while The Major BBS simultaneously
updates various other information on the console. For more on how The Major
BBS emulates multiple screens at once, see page 143.

Note: the move cursor command is relative to the upper left corner defined
in the most recent call to setwin() (not to the upper left corner of the
screen buffer, as is the locate() function).

To convert IBM display attributes into ANSI sequences, use ibm2ans():

bufptr=ibm2ans (attr,buffer); Convert IBM attribute to ANSI colors
char *bufptr; copy of buffer

char attr; attribute (see page 138)

char *buffer; where to put ANSI sequence (up to

15 bytes, including terminator)

DEV-142 Galacticomm

The following coded example shows some of these video routines in action.
zipred() function makes a red box with an exclamation point zip across the
screen from left to right, and then disappear. Note that the image (of the
original screen with a red box on it) is constructed in a buffer and then
copied to the visible screen, so the red box does not "flicker".

void
zipred(void)

{

The

static char savebf(4000]; /* buffer to save original screen image */
static char drawbf[4000]; /* buffer to use as a drawing board */
char *frzseg(); /* frzseg() returns a char pointer! */
int savx,savy; /* to save cursor position */
int x;
savx=curcurx(); /* save cursor position */
savy=curcury\);
movmem{frzseg(),savebf,4000); /* save screen image */
setatr (0x4F); /* bright white on red */
for (x=0 ; x < 70 ; x++) { /* From left to right.., */
movmen(savebf ,drawbf, 4000); /* prepare drawing board */
setwin(drawbf,x,9,x+10,15,0); /* define an 11 by 7 window */
printf("\£"); /* £ill it with red */
locate (x+5,12); /* and in the center */
printf("i"); /% put an "!" */
rstwin(); /* (restore window settings) */
movmenm (drawbf , frzseg(),4000); /* make this picture visible */
}
movmenm(savebf, frzseg(),4000); /* restore original screen image */
locate(savx,savy); /* restore cursor position */
setatr (0x07); /* white on black */
unfrez();
}
To read from the videc screen or buffer, you can use scnoff():
offset=scnoff (x,y); Compute the offset
int offset;
int x,y;
For example, to find the character and attribute at the lower right corner
of a SCNSI1Z-byte screen buffer:
lrchar=scnbuf[scnoff(79,24)];
lrattr=scnbuf[scnoff(79,24)+1];
Writing to Several ANSI Screens at Once
To support ANSI capability on several screens at once, you must save some
internal variables. The printf() routine only supports one screen and can
keep track of partial ANSI commands. To support several screens, you must
save the entire curatr structure. (Note that curatr is the name for a
structure type as well as the name of an instance of that structure type.)
Developer’s Guide DEV-143

For example, you could maintain an array of curatr structures and make
one of them "active" whenever you wrote to one of the screens.

struct curatr ansave[NUMSCNS];

movmem(&ansave[actsen], &curatr,sizeof (struct curatr));

printf(ANSI commands to screen);

movmem(&curatr, &ansave[actscn],sizeof (struct curatr));
The first movmem() puts the curatr structure for the active screen where
printf() will use it and update it. The second movmem() saves it away
again.

(Note: curatr.attrib is the attribute setting of the most recent setmbk.)

Keyboard Input (getchc())

yes=kbhit(); Has the operator hit a key?
int yes; l=yes 0=no

After checking the standard library routine kbhit(), The Major BBS uses this
routine to input a single keystroke.

char=getchc(); Get a keystroke from the keyboard
int char;

Note that getchc() returns a 16-bit value. GCOMM.H contains numerous
constants for the return value of getchc(). The values are either extended
ASCII in the lower 8 bits, or the keyboard scan code in the upper 8 bits.

Here are appropriate constants for representing the return values of

getche() (you can use these in the C-language cases of a switch statement):
' ' through ™’ (for the printable ASCII characters)
"\x00" through ’\xFF’ (for all extended ASCII characters)

Fl SHIFT+F1 CTRL+F1 ALT+F1
F2 SHIFT+F2 CTRL+F2 ALT+F2
F3 SHIFT+F3 CTRL+F3 ALT+F3
F4 SHIFT+F4 CTRL+F4 ALT+F4
F5 SHIFT+F5 CIRL+F5 ALT+FS
F6 SHIFT+F6 CTRL+F6 ALT+F6
F7 SHIFT+F7 CTRL+F7 ALT+F7
F8 SHIFT+F8 CTRL+F8 ALT+F8
F9 SHIFT+F9 CIRL+F9 ALT+F9
F10 SHIFT+F10 CTRL+F10 ALT+F10

HOME CTRLHOME BAKTAB
END CTRLEND INS
PGUP CTRLPGUP DEL
PGDN CTRLPGDN TAB
CRSRLF CTRLLF ESC

CRSRRT CTRLRT
CRSRUP CTRLUP
CRSRDN CTRLDN

DEV-144 Galacticomm

ALT A ALT K ALT U ALT 0
ALT B ALT L ALT V ALT 1
ALT C ALT M ALT W ALT 2
ALT D ALT N ALT X ALT 3
ALT E ALT O ALT Y ALT 4
ALT F ALT P ALT Z ALT 5
ALT G ALT Q ALT 6
ALT H ALT R ALT 7
ALT I ALT S ALT 8
ALT J ALT T ALT 9

The codes that these constants represent are used in many contexts, online
and offline. See AIN.H for converting incoming ANSI sequences into these
keystroke codes.

Cursor
To control the video screen cursor:
cursiz(howbig); Set the size of the video cursor
int howbig; NOCURS cursor disappears
LILCURS small standard cursor
BIGCURS big insert-mode cursor

rsteur(); Restore the cursor to the size
it was before the last cursiz()

howbig=curcurs(); Find out how big the current cursor
is.
int howbig; NOCURS, LILCURS, or BIGCURS

Developer’s Guide DEV-145

7. OPERATOR SERVICES

Statistics

You can add your own statistical graphs to those already available on the
operator conscle. There are two parts to this:

1. Generating the graph
2. Displaying the graph

The first part is up to you. You could create a 4000 byte file that
stores the exact display image of the statistics screen. Only a 42
by 17 character portion of that screen may be used for your graph:

Statistics Sub-Screen
columns 15 through 56, inclusive, out of 0 through 79
rows 1 through 17, inclusive, out of 0 through 24

You'll create this file offline, perhaps during the nightly auto-cleanup
(that’s when we create the standard screens used in DFTSTATS.C).

or you could just create a "background" file. At the moment when the Sysop
brings up your screen, you can have special code that fills in all the
figures or draws some kind of drawings.

The second part is up to the Sysop to do, and you to prepare for. Use the
function register stascn() to register your statistics screen. Then your
screen will be available on the scrolling menu of the Statistics and Graphs
screen when the BBS is on the air.

So, to register your screen:
1. Create one copy of the statsc data structure in your online

code. This structure is defined in STATSCNS.H. Here is an
example, with the blanks filled in:

struct statsc mygraph={ /* statistic screen interface structure */
ugat activity", /* name of statistic screen "y
YDDDSTAT.BIN", /* file name to get screen from *f
NULL, /" initialize (bring Up scn) routine */
NULL, /* key hit handler routine .
NULL, /* occasional update (every 60 secs) */
NULL, /* once-per-cycle routine xy
NULL /* take down screen routine *f

X

DEV-146 Galacticomm

The "name" appears in the menu of choices on the Statistics
and Graphs screen. The 42 by 17 region of the file is
displayed first (as background, or as your finished display)
when the Sysop calls up your screen. Note that the statistics
screen file has the Developer-ID prefix on it. All the NULLs
are the non-implementation of five special purpose routines
for your screen.

Here are what these routines can do:

void (*inirou)(); A routine to call whenever your screen
should appear. The routine could make
computations and display them on your
screen. Of course, you should only
write to the 42 by 17 character area
reserved for your screen as shown
above.

unsigned (*keyhit) This routine is called with each and
(unsigned scncod); every keystroke from the Sysop when
your screen is on display. The
parameter of the routine is the same
as the getchc() return value (page 144).
The routine should either handle the
keystroke and return 0, or just
return the keystroke value if it
doesn’t know what to do with it.

void (*occrou)(); This routine will get called every
60 seconds that your screen is
on display. You can update your
display with the up-to-the-minute
information.

void (*cycrou)(); This routine gets called about 16
times a second when your screen is on
display. If you use it (put something
other than NULL here), be sure that
it executes fast, so the system doesn’t
get bogged down updating your display.

void (*finrou)(); This routine gets called when your
display goes away. It gets called once
for each call to the inirou() routine.
2. Register the statistics screen in your initialization routine.
register stascn(&mygraph);
This all swings into place when the Sysop switches to the statistics screen

(by typing <Alt-T>) and selecting your statistics screen from the list of
choices.

Developer’s Guide DEV-147

Audit Trail

To display a message in the audit trail:

shocst(texl,tex2,pl,...,pN); Enter a string into the Audit Trail
char *texl; summary string (up to 32 chars long)
char *text; detail string, as in printf()
PLeprsvasy PO parameters for control string

The detail string can be up to 65
characters long. The parameters

passed can take up to 12 bytes on
the stack.

This function makes an an entry in the audit trail. Just the date, time and
summary information appear on the Summary screen. The summary, detail and
source information, along with time and date, appear on the Audit Trail
Detail screen, and get written to the Audit Trail database.

Sources for Audit Trail messages
Cleanup

Event N (1 to 4)

Console

Chan NN (00 to FF)

The global variable "usrnum" is an implicit input to shocst(). It must be
set to a valid user number (0 to nterms-1) or -1 to -3 (see page 39).

Channel Status Reporting

shochl(legend,sing,attr) Show a line on the Online User Info
screen
char *legend; information, up to 29 characters
char sing; single-character indicator for
the user matrix (Summary screen too)
int attr; IBM color display attribute

If your Add-on Option does not manage sessions or connections in some way,
you probably don’t want to use this routine. The convention is that the
User-ID appears on the Online User Information screen and a double-arrow
appears in the user matrix there and on the Summary screen.

One of the conventions of the Online User Information screen is to
color-code the information based on the user’s baud rate. You can do this
by computing the last parameter of shochl() using baudat() (as we do many
times in MAJORBBES.C).

attr=baudat (baud,blink) Compute the display attribute based
on the user’s baud rate

int attr; IBM 8-bit display attribute

unsigned baud; baud rate, 300 to 38400

int blink; l=give us a blinking attribute

DEV-148 Galacticomm

8. DATABASES

Database Functions (xxxbtv())

Btrieve, by Novell, Inc., provides a powerful collection of database-
management primitives. The Major BBS has a plethora of routines that provide
a smooth C language interface.

Btrieve File Identifiers

The functions opnbtv(), setbtv(), and clsbtv() are the only functions that
explicitly deal with a single database. All other database functions
implicitly deal with a single database using the file identified by the
most recent setbtv(). A Btrieve file identifier is a pointer to a structure
defined in BTVSTF.H:

struct btvblk { /* btrieve file data block def */
long posblk[128/4]; /* position block */
char *filnam; /* file name */
int reclen; /* record length */
char *key; /* key for searching, etc. */
char *data; /* actual record contents */
int lastkn; /* last key number used ®/
int keylns[SEGMAX]; /* lengths of all possible keys*/

}i

$define BTVFILE struct btvblk /* shorthand for btrieve file id */

opnbtv() is the source of all Btrieve file identifiers. setbtv() is used to
set the Btrieve file for all subsequent database functions.

WARNING: You must be careful not to forget to use setbtv(). If you
do, your program might seem to work fine when you test it with a
single user, but fail insidiously when you try it with multiple
users.

Many of the database functions have an explicit "recptr" parameter for
specifying where to get or put a record for writing or reading. If you use
NULL for this value then you may use a default buffer specified in the btvblk
"data" field.

There are three flavors of database record read procedures. All specify a
record according to a "key" or according to the order by a key.

get Read the record. If missing, bomb (with "catastro" message)

Developer’s Guide DEV-149

query Find out if the record is in the database
acquire Find out if the record is in the database, and if so, read it

Here are synopses of the routines in PLBTVSTF.C:

omdbtv(mode) ; set mode for next opnbtv() call

int mode; see codes below
This routine sets the Btrieve file mode for subsequent database files opened
by opnbtv(). The following mutually exclusive values for the "mode" parameter

are defined in BTVSTF.H:

PRIMBYV default, pre-image (data integrity) mode

ACCLBV accelerated (faster write) mode

RONLBV read-only mode

VERFBV write-with-verify mode

EXCLBV exclusive (non-sharing) mode
bbptr=opnbtv(filnam,reclen); open a Btrieve file for I/0
BTVFILE *bbptr; file identifier

char *filnam; filespec

int reclen; record length in bytes

If the file is not found, a "catastro()" error message (BTRIEVE OPEN ERROR
12) is generated automatically by opnbtv() -- you never have to check the
return value for error conditions.

setbtv(bbptr); set BTVFILE ptr for subsequent ops
BTVFILE *bbptr; file to be used hereafter

This important utility specifies the Btrieve database for all other -- btv
utility functions (except opnbtv() and clsbtv()). See about Btrieve File
Identifiers, above.

rstbtv(); restore the current BTVFILE to what
it was before the corresponding
recent setbtv()

Calls to setbtv()/rstbtv() make use of a "stack" so they can be nested up to
10 levels deep.

is=qgrybtv(key,keynum,qryopt); query whether a record exists
int is; 1 if record exists, else 0
char *key; key to be used for loockup

int keynum; key position number to use
int gryopt; search option (used via macro)

getbtv(recptr, key,keynum,getopt); get a record (bomb if not there)

char *recptr; destination record buffer ptr
(NULL to use bbptr->data)

char *key; key to be used for lookup

int keynum; key position number to use

int getopt; search option (used via macro)

DEV-150 Galacticomm

is=obtbtv(recptr,key, keynum,obtopt); acquire a record (if you can)

int is; 1 if record exists, else 0

char *recptr; destination record buffer ptr
(NULL to use bbptr-»>data)

char *key; key to be used for lookup

int keynum; key position number to use

int optopt; search option (used via macro)

The above three routines are almost exclusively called out in the source

code only by using macros that are defined in BTVSTF.H. For example, all the
g--btv() "functions" are actually macros that generate special-purpose calls
to grybtv().

abspos=absbtv(); find current "absolute" position
long abspos; "absolute" (direct) file position
gabbtv(recptr,abspos,keynum) ; get a record by "absolute" position
char *recptr; destination record buffer ptr
(NULL to use bbptr-»>data)
long abspos; "absolute" (direct) file position
int keynum; key number to establish there
is=aabbtv(recptr,abspos,keynum); acquire a record by "absolute" position
int is; 1 if record could be read, else 0
char *recptr; destination record buffer ptr
(NULL to use bbptr->data)
long abspos; "absolute" (direct) file position
int keynum; key number to establish there

The return value of absbtv() may be used to identify the "physical" position
of a record in a database. The record may be accessed using gabbtv() or
aabbtv() with that position. This type of access is much faster than any of
the keyed access methods. We have determined that this absolute position
value is never zero for a legitimate record. Therefore, we sometimes use 0L
as a special value to represent a pointer to no record at all.

is=slobtv(recptr); Read the physically first record in
the database

ift ds; l=there was one 0O=database empty

is=snxbtv(recptr); Read the physically next record in
the database

int is; l=there was one O=already read last

is=sprbtv(recptr); Read the physically previous record
in the database

int is; l=there was one O=already read first

is=shibtv(recptr); Read the physically last record in
the database

int is; l=there was one O=database empty

These routines search the database in the physical order in which records
are stored. The sequence defined by the database keys usually doesn't
matter in this case, and neither does chronolegy -- records could appear in

Developer’s Guide DEV-151

any order. The advantage of the snxbtv()/sprbtv() routines over the
gnxbtv()/qprbtv() routines (which are keyed-sequential -- see page 153) is
their speed: physical access can be about eight times as fast as
keyed-sequential.

Database Update Routines

updbtv(recptr); update current record
char *recptr; replacement record buffer ptr

(NULL to use bbptr-»>data)
ok=dupdbtv(recptr); (more tolerant) update current record
int ok; l=updated O=duplicate collision
char *recptr; replacement record buffer ptr

These functions must be called immediately following a get-record call of
some kind (queries are not enough, but gcrbtv() will suffice after a query).
updbtv() and dupdbtv() are the same except that when the new record contents
produce an illegally duplicate key, updbtv() bombs with a catastro() error,
while dupdbtv() simply returns a 0. These routines cannot be called on a
database with variable length records. Instead, use upvbtv():

upvbtv(recptr,length); update variable length record
char *recptr; replacement record buffer ptr
(NULL to use bbptr->data)
int length; number of bytes for new record contents

Database Insert Routines

insbtv(recptr); insert new fixed-length record
char *recptr; new record buffer ptr
(NULL to use bbptr->data)

ok=dinsbtv(recptr); (more tolerant) insert new record
int ok; l=inserted O=duplicate collision
char *recptr; new record buffer ptr

(NULL to use bbptr-»>data)

insbtv() will automatically generate a fatal error (BTRIEVE INSERT ERROR 5) 4%
you try to insert a record with the same key as another record in a database
(if that key does not allow duplicates). dinsbtv() will simply return a 0 in
that case. Otherwise, the routines have identical effects.

invbtv(recptr,length); insert variable length record
char *recptr; new record buffer ptr

(NULL to use bbptr->data)
int length; number of bytes for new record

Deleting a Database Record

delbtv(); delete current record

This function must be called immediately following a get-record call of some
kind (queries are not enough, but gecrbtv() will suffice after a query).

DEV-152 Galacticomm

Variable Record Length -- Just how long was it?

reclen=11lnbtv(); find the record length of the most

recently read record

This function is handy after reading a variable length record to find out
how many bytes are actually in the record. In that case, this is the same
value that was passed to invbtv() or upvbtv() as the length parameter when
the record was put into the database.

Closing a Database File

clsbtv(bbptr);
BTVFILE *bbptr;

Database Query Routines

close a Btrieve file when finished
file identifier (from opnbtv())

The following database utilities are implemented as macros (defined in
BTVSTF.H). They actually generate calls to functions qrybtv(), getbtv(),

and others.

is=qgegbtv(key, keynum);
int is;

char *key;

int keynum;

is=qnxbtv();

int is;

is=gprbtv();
int is;

exists=qgtbtv(key,keynum);
int exists;
char *key;
int keynum;

exists=qgebtv(key, keynum);
int exists;
char *key;
int keynum;

exists=qltbtv(key, keynum);
int exists;
char *key;
int keynum;

exists=glebtv(key,keynum) ;
int exists;

char *key;

int keynum;

exists=globtv(keynum);

int exists;
int keynum;

Developer’s Guide

query for "equal to" spec’d key
1 if record exists, else 0
key specification
key number involved

query for "next" record in seg
1 if record exists, else 0

query for "previous" record
1 if record exists, else 0

query for "greater than" key
1 if record exists, else 0
key specification
key number involved

query for "greater/eq (>=)" key
1 if record exists, else 0
key specification
key number involved

query for "less than" key
1 if record exists, else 0
key specification
key number involved

query for "less/equal (<=)" key
1 if record exists, else 0
key specification
key number involved

query for lowest record present
1 if record exists, else 0
key number involved

DEV-153

exists=ghibtv(keynum);
int exists;
int keynum;

query for highest record present
1 if record exists, else 0
key number involved

The above query routines set the "key" buffer reserved for the database.

For example, the following code might be used to find out if there are any
users in the Registry database whose User-ID starts with the letter "Q" (see
REGISTRY.C for the variables and structure of this database -- the "regrec"

structure).

setbtv(regbb);

if (ggebtv("Q",0) &s& regbb->key[0] = ’Q") {
prf("Warning! Someone named \"¥s\" is in the registry!",regbb->key);

}

Database Get Routines

gegbtwv(recp,key,keynunm) ;
char *recp;

char *key;

int keynum;

gnxbtv(recp);
char *recp;

gprbtv(recp);
char *recp;

ggtbtv(recp, key, keynum) ;
char #*recp;
char *key;
int keynum;

ggebtv(recp, key,keynum) ;
char *recp;
char *key;
int keynum;

gltbtv(recp,key, keynum);
char *recp;

char *key;

int keynum;

glebtv(recp, key,keynum) ;
char *recp;
char *key;
int keynum;

globtv(recp, keynum) ;
char *recp;
int keynum;

ghibtv(recp,keynum);

char *recp;
int keynum;

DEV-154

get record "equal to" spec’d key
destination record buffer ptr
key specification
key number involved

get "next" record in sequence
destination record buffer ptr

get "previous" record in seg
destination record buffer ptr

get first record > spec’d key
destination record buffer ptr
key specification
key number involved

get first record >= spec’d key
destination record buffer ptr
key specification
key number involved

get highest record < spec’d key
destination record buffer ptr
key specification
key number involved

get highest record <= spec’d key
destination record buffer ptr
key specification
key number involved

get lowest record present
destination record buffer ptr
key number involved

get highest record present

destination record buffer ptr
key number involved

Galacticomm

gerbtv(recp, keynunm);
char *recp;
int keynum;

get (or re-get) "current" record
destination record buffer ptr
key number to establish

The above "get" routines read in a full record from a database. By contrast,
the query routines simply tell you if the record is there, and read in the key
fields.

In all of these routines you may specify where to put the data, using the
"recp" parameter. You may also pass NULL for this parameter, and the data
record will go into the standard data buffer for the database. Expanding upon
the query example, gcrbtv() can be used to read in a database record that
passed the query test:

setbtv(regbb);
if (ggebtv("Q",0) && regbb->key[0] == 'Q’) {
gcrbtv (NULL,0);
prf("Rarning! Someone named \"%s\" is in the registry!",regbb-»data);
prf("™\nAnd he has this to say about himself:\n\"%s\"\n",
((struct regrec *)regbb->data)-»sumlin);

}

This technique of "casting" the data buffer to a special purpose structure is
usually required to use this buffer, because the data field of the btvblk
structure (see page 149) is just a general purpose character pointer -- you
must overlay the structure of the actual database record.

Database Acquire Routines

is=acgbtv(recptr, key,keynunm);
int is;

char *recptr;

char *key;

int keynum;

is=agtbtv(recptr, key,keynum);
int is;

char *recptr;

char *key;

int keynum;

is=agebtv(recptr,key, keynum);
int is;

char *recptr;

char *key;

int keynum;

is=altbtv(recptr, key, keynum);
int is;

char *key;

int keynum;

is=alebtv(recptr, key, keynum);
int is;

char *recptr;

char *key;

int keynum;

Developer’s Guide

"acquire" record with spec’d key
1 if record exists, else 0
destination record buffer ptr
key value to search for
key number

acquire first record > key
1 if record exists, else 0
destination record buffer ptr
key specification
key number involved

acquire first record >= key
1 if record exists, else 0
destination record buffer ptr
key specification
key number involved

acquire highest record < key
1 if record exists, else 0
key specification
key number involved

acquire highest record <= key
1 if record exists, else 0
destination record buffer ptr
key specification
key number involved

DEV-155

is=alobtv(recptr, keynum); acquire lowest record in database

int is; 1 if record exists, else 0

char *recptr; destination record buffer ptr
int keynum; key number involved
is=ahibtv(recptr,keynum); acquire highest record in database
int is; 1 if record exists, else 0

char *recptr; destination record buffer ptr
int keynum; key number involved

These routines combine a query and a get into the useful combination where you
want to see if a record is in a database, and if it is, to read it. Using
these routines we could code:

setbtv(regbb);
if (agebtv(NULL,"Q",0) && regbb->data[0] == 'Q’) {
prf("Warning! Someone named \"%s\" is in the registry!", regbb->data);
prf("\nAnd he has this to say about himself:\n\"$%s\"\n",
((struct regrec *)regbb->data)->sumlin);

}

Here are two special-purpose acquire routines:
is=agnbtv(recptr); "acquire next" record in sequence
int is; 1 if another record exists, else 0
char *recptr; destination record buffer ptr
is=agpbtv(recptr); "acquire previous" record in sequence
int is; 1 if previous record exists, else 0
char *recptr; destination record buffer ptr

Use these routines only for databases with a single non-unique key that’s a
NUL-terminated string. Each of these routines returns false if the two
records (the "current" one and the "next/previous" one) compare unequal
(case-sensitive) when treated as strings.

Creating your own Databases

If you purchase the Btrieve development kit from Novell, you can use the
following command to create new databases:

BUTIL -CREATE <filename>.VIR <filename».BCR

The .BCR file is an editable text file that you will define that specifies the
format of your database. See the Btrieve manual. (Tip: wuse the "zstring"
format for NUL-terminated string fields.) The .VIR is an empty "virgin" form
of the database that you’ll always keep online. During the installation
process, an empty .VIR file is copied to a .DAT file if no .DAT file exists.

DEV-156 Galacticomm

System Variables Database

The Major BBS maintains several variables on disk in BBSVEL.DAT.
available at runtime, are changed as necessary, and are automatically saved

back to disk every 300 seconds (default value of SVRATE).

These are

The following

code from MAJORBBS.H shows the fields of the system variables in sv, sv2 and

sv3:

extern
struct sysvbl {
char key[4];
char dspopt[6];
long calls[8];
char lonmsg[MTXSIZ];
long dwnlds;
long uplds;
long msgtot;
unsigned emlopn;
unsigned sigopn;
int hisign;
char monmal;
char savmin;
long oldsec[8][24];
char spare[1300-1230];
} sv;

extern
struct sysvb2 {
char ky2[4];

/* system-variable btrieve record layout*/
4-character dummy key of "key"
display options by position number*/
number of calls this month/baud rt*/

/*

unsigned matrix[NCOMTY][NAGEBK];

long oldcrd[8][24];

int nliniu[48];

int lstzer;

long x25kps;

unsigned x25ps;

long x25mbs;

long x25bs;

unsigned numact;

unsigned numfem;

unsigned numcor;

unsigned numans;

unsigned long paidpst;

unsigned long freepst;

long totcalls;

int lastmcu;

char spare[1300-986];
} sv2;

extern
struct sysvb3 {
char ky3[4];
long secghr[NGROUPS-1][24];
long crdghr [NGROUPS-1][24];
} sv3;

Developer’s Guide

/i
/*
/*
/*

/*

log-on message in effect

total downloads to date
total uploads to date

msg (E-mail/Forums) total to date
E-Mail open at the moment

Forum messages open at the moment
highest Forum number used to date

Aux. CRT display selector

Minutes to save screen

*/

*/

old sec/grp/hr (now in sv3.secghr)*/
spare space for graceful upgrades */

4-character dummy key of "ky2"

second system variable btrieve layout*/

uy

matrix of accts (computer /age)*/

old crd/grp/hr (now in sv3.crdghr)*/
number of lines in use per hlf/hr */
date of last zeroing of stats
X.25 kilopackets sent or received
fractional X.25 kilopackets

X.25 megabytes sent or received

fracticnal X.25 megabytes

total number of user accounts

number of female users

number of corporate users

number of ANSI users
credits paid-for so far

credits given away free so far

total calls-to-date

date of last midnight cleanup
spare space for graceful upgrades

third system variable btrieve layout

4-character dummy key of "ky3"
seconds used (channel grp/hr)
credits consumed (channel grp/hr) */

74
]
7
X/

i
&
A

DEV-157

User Account Database

The following code from USRACC.H shows the fields of the user accounting

database, BBSUSR.DAT.

This same structure is used for the dynamically

allocated usracc[] array, which stores the information in-memory for users

who are online.

(Note:

that array may be bigger than 64K.

get information on online users -- see page 82).

struct usracc {

}i

#define ANSON
#define ANSMAN

#define HASMST
#define UNDAXS
#define SUSPEN
#define DELTAG
#define GOINVS

char userid[UIDSIZ];
char psword[PSWSIZ];
char usrnam[NADSIZ];
char usradl[NADSIZ);
char usrad2[NADSIZ);
char usrad3[NADSIZ];
char usrad4[NADSIZ];
char usrpho[PHOSIZ];
char systyp;

char usrprf;

char ansifl;

char scnwid;

char scnbrk;

char scnfse;

char age;

char sex;

unsigned int credat;
unsigned int usedat;
int ecsicnt;

int flags;

int access[AXSSIZ];
long emllim;

char prmcls[KEYSIZ);
char curcls[KEYSIZ];
long timtdy;
unsigned int daystt;
unsigned int fgvdys;
long creds;

long totcreds;

long totpaid;

char birthd[DATSIZ];

/*
J*
/*
/*
/*
J*
/*
S*
/*
/*
/%
/*
/*
/t
/%
J*
/*
/*
/*
/*
/*
/%
/*
/*

char spare[USRACCSPARE]; /¥

O I

ool S

#define PRFLIN 1

DEV-158

/*
/*
/*

/*
/*
/*
J*
/*
J*

/*
/*

user-id */
password */
user name */
address line 1 (company) */
address line 2 */
address line 3 */
address line 4 */
phone number */
system type code */
user preference flags */
ANSI flags Ly
screen width in columns */
screen length for page breaks */
screen length for FSE stuff */
user’s age */
user’s sex (’M'" or 'F') */
account creation date */
date of last use of account */
classified-ad counts used so far */
various saved bit flags */
array of remote sysop access bits LVd
e-mail limit reached so far (new/old bdy) */
class to return user to if necessary */
current class of this user */

Use uacoff() to

time user has been online today (in secs) */
days left in this class (if applicable) #/
days since debt was last "forgiven" */
credits available or debt (if negative) */
total credits ever posted (paid & free) */

total credits ever posted (paid only) */
this user’s birthday date */
spare space, for graceful upgrades */
ansifl bit definitions */

ANSI on=1; off=0 */

ANSI manual override (0O=auto sensing) */

flags bit definitions

user has the "MASTER" key for the BBS */

this account cannot be deleted */
this account is "suspended" */
this account is tagged for deletion */

this account is "invisible" upon logon */

usrprf bit definitions
always use line editor?

yes=1 */

Galacticomm

User Class Database

This database records information on the user classes.

Classes are defined

by the Sysop using the Remote Sysop ACCOUNT menu, CLASS command.

extern
struct acclass {

}:

char clname[KEYSIZ];
char nxtcls([4][KEYSIZ];

int limcal;
int limday;
int dftday;
long dbtlmt;
int fgvday;
int idlday;
int flags;
long seconds;

unsigned users;
char msgs[2][XMSGSZ];
char spare[2032-2022);

#define DOUTTIM 0
#define DLOAFER 1
#define DEXPIRE 2
#define DCREDIT 3

#define KCKOFF
#define CLSCHG
#define NOCRED
#define DBTLMT

(ool NN S N

#define HASCRD 16
#define DAYEXP 32
#define IDLEXP 64
#define MONDAY
#define FSTMTH
#define NUMDAY
#define HITLMT
#define REPDBT
#define CRDXMT

128
256
512
1024
2048
4096

Developer’s Guide

/* accounting class structure */
/* class name */
/* class to return to when expires */
/* limit per call (-l=no limit) */
/* limit per day (-l=no limit) */
/* default days before expiring (-l=never) */
/* debt limit (O=none) */
/* wait how many days before "forgiving" */
/* inactive days before delete (-l=never) */
/* general bit flags */
/* seconds used so far this month */
/* total number of users in this class */
/* exiting class messages w/
/* spare space - decrease when needed x/
/* indexes for nxtcls[] when a user... */
/* is out of time for the day x/
/* hasn't logged in for x number of days */
/* has been around x number of days */
/* has/doesn’t have credits */
/* struct acclass bit flag definitions */
/* out of time: knock the user offline */
/* out of time: temporarily change class */
/* expire when: credits < 1 */
/* expire when: user reaches a debt limit */
/* expire when: credits > 0 */
/* expire when: x number of days passes */
/* expire when: no log on for x # of days */
/* forgive: every Monday L
/* forgive: on the first of each month */
/* forgive: every x number of days */
/* forgive: when they hit their debt limit */
/* report debt when forgiven? 74
/* this class exempt from credit charges? */

DEV-159

Using Spare Space in Galacticomm Databases

If you're developing your own Add-on Option for The Major BBS, you should
make your own databases rather than add onto the spare spaces in Galacticomm
databases. Otherwise you’ll run into conflicts with other developers trying
to use the same space.

On the other hand, if you're customizing your own BBS, and you want to add
fields to a database, there might be a way. Add your fields after the
spare[] field.

When customizing the database on your BBS, add fields at the end
of the structure -- between the spare[] field and the "}" —- and
decrease the spare size accordingly, so the size of the overall
structure is unchanged.

In new versions of the BBS, Galacticomm will try to add new fields before
the spare[] field.

Be conservative and use as few bytes as possible. If you use a lot of bytes
in a database, and Galacticomm eventually uses them too, you're going to be
in for some complex conversion activity to be able to update to a new
release of The Major BBS.

Generic User Database

This database, BBSGEN.DAT, may be used by any application to store information
about users. To create your own records in BBSGEN.DAT, first define a
structure. The first two fields should be User-ID and module name. Say you
wanted to store a user’s score in a game:

struct bggame { /* generic user data records for my game */
char userid[UIDSIZ]; /* User-ID */
char modnam[MNMSIZ]; /* Module Name ("My Game") */
int score; /* score x/

i
This sure beats making a whole separate .DAT file for one measly integer.
To store a record for the current user, with a score of 50, you could code:

struct bggame bgbuff;

strcpy (bgbuff,userid,usaptr->userid);
strepy (bgbuff.modnam, "My Game");
bgbuff.score=50;

setbtv(genbb) ;

invbtv(&bgbuff,sizeof (bgbuff));

Notice how the module name was not obtained from the "descrp" field of

your module structure (see page 30 about gmdnam()). That field is a copy

of the module name in your .MDF file. If the Sysop innocently edits the
-MDF file to change the module name, you probably don’t want him to suddenly
be missing all of your records in BBSGEN.DAT. That's why it might be a good
idea to hard-code your module name in your records of BBSGEN.DAT.

DEV-160 Galacticomm

The global variable genbb is declared in MAJORBBS.H.
To read the current user’s score, you could code:
struct bggame bgbuff;
strcepy(bgbuff.userid,usaptr->userid);
strepy(bgbuff.modnam, "My Game");
setbtv(genbb);
if (acgbtv(abgbuff,&bgbuff,0)) {
prf("Score: %d",bgbuff.score);

else {
prf("No score recorded");
}

Developer’s Guide DEV-161

9. OFFLINE UTILITIES

This section covers routines that are used in the offline utilities and
nowhere else. The offline utilities also make use of several routines that
are used for the online operator interface, starting on page 137.

Most offline utilities have a basic background screen design which stays in
view whenever the Operator is using that utility. These screens can be
designed using TheDraw, and saved as 4000 byte .BIN files. For a utility to
read a screen into memory at runtime, it uses iniscn():

iniscn(filspc,where) Read an 80x25 character color
screen from a .BIN file

char *filspc; DOS path for the file

void *where; buffer or video memory

The "where" parameter can be either an in-memory buffer (allocated by
alcmenm(SCNSIZ), where SCNSIZ is defined as 4000 in GCOMM.H), or the actual
videc RAM address (see page 139 about frzseg()).

See page 164 for what iniscn() does on monochrome screens.
Window output (explode())
To make a window "pop up" on the screen, we use explode():

explede (sctptr,wulx,wuly,wlrx,wlry)
Pop up a window on the CRT

char #*sctptr; screen image (from iniscn())

int wulx,wuly; window upper left corner

int wlrx,wlry; window lower right corner
(inclusive)

You can use TheDraw to design a pop-up window background in a .BIN file,
then read it in with iniscn(), possibly modify it with setwin() and
printf(), and display it with explode().

The four windowing parameters in the explode() function define both where to
read the image (relative to sctptr) and where to display it (on the CRT).

So you really design where to put the pop-up window in the .BIN file with
TheDraw, and just tell explode() what you came up with.

DEV-162 Galacticomm

Or, you can pack many window backgrounds on a single .BIN screen and use
explodeto() to put them anywhere on the CRT:

explodeto(sctptr, fux, fuy, flx, fly, tux, tuy)
Pop up a window on the CRT

char *sctptr; screen image (from inisecn())

int fux,fuy; source window upper left corner

int flx,fly; source window lower right corner
(inclusive)

int tux,tuy; dest. window upper left corner

If you don’'t like shadows, use nsexploto() instead of explodeto(), with the
same parameters.

A call to any of the explode() family of routines automatically
calls proff() with the tux,tuy parameters, so that you can use calls
to prat() relative to where you put the window on the screen (see
page 140 about proff() and prat()). This affects future operation of
the choose() and edtval() routines (see below).

All X coordinates range from 0 to 79, left to right, and Y coordinates range
from 0 to 24, top to bottom.

The global variable explodem defaults to 1 for an animated exploding effect,
but may be set to 0 to make the windows pop up instantly.

int exploden; animate the exploding window?
l=animate, O=instant

A "shadow" of one cell vertically and two cells horizontally is
automatically applied to the bottom and right edges of each pop-up window.

When you're ready to pop up a window, first save the current screen image so
you can restore it when you make the window disappear. For example:

char *scnsav;
movmem(frzseg(),scnsav=alcmem(SCNSIZ),SCNSIZ);

This allocates 4000 bytes and moves the current screen image to it. When
done with the window, just restore the saved image back, as in:

movmem(scnsav,frzseg(),SCNSIZ);
free(scnsav);

Pop-up windows can be popped on top of one another. This means you’ll need
to have a series of saves and restores nested in one another, like this:

save background
pop-up #1

save window #1
pop-up #2

save window #2
pop-up #3

restore window #2
restore window #1
restore background

Developer’s Guide DEV-163

To be compatible with both monochrome and color screens, you can call
moncrcol ():

monorcol () Determine monochrome versus color,
based on the offline Hardware Setup
option CRT (which is set to COLOR,
MONO or AUTO)

imonorcol () Determine monochrome versus color
based on BIOS settings only. This is
equivalent to monorcol() when CRT is
set to AUTO. We use this routine in
cases where we don’t want to be
depending on the BBSMAJOR.MCV file.

int color; l=operator’s screen is color
O=monochrome

If you don’t want to depend on the CRT offline option, you could compute
color automatically by some other method as in:

color=(FP_SEG(frzseg()) != 0xB000);

Don't define your own "color" variable -- use the global variable from
GCOMM. LIB.

The color variable has a global effect on iniscn() and setatr() -- if color
is set to zero, those routines will translate color values into reasonable
monochrome values:

Automatic translation of color to monochrome

Any attribute with a white background becomes black on white
(inverse video).

Otherwise, the attribute becomes white on black,
preserving blinking and/or brightness, if they are present.

Window input (edtval(), choose())

If you want the operator to enter something, you can use explode() to pop
up a window (see the previous section), and then edtval() to handle his
entry session.

save=edtval (sx,sy,maxlen,sval,valrou, flags)
edit a string field on the screen

int save; 0=ESC hit, l=Enter, Tab, Shift-Tab,
cursor up or cursor down was hit

int sx,sy; starting point for the field on
the screen (sx is 0-79, sy 0-24)

int maxlen; maximum size of string (including
NUL -- maxlen-1 is field width)

char *sval; default value / return value

int (*valrou)(); validation routine

int flags; options

The sx,sy coordinates are relative to the tux,tuy coordinates of the most
recent call to the explode() family of routines (page 162). This is done
via the proff() and prat() routines (page 140).

DEV-164 Galacticomm

Put a default value in the sval buffer if you want one (the cursor will
start at the right end of the value), or fill sval with a zero-length string
to start from scratch. Either way, you have to have maxlen bytes available
at sval. Here are the bit flag options for the last parameter of edtval():

#define MCHOICE
#define ALLCAPS
$#define USEPOFF
#define MULTIEX

/* multiple choice question, hide cursor */
/* convert all chars to capital letters */
/* use proff() x,y base coord offsets */
/* allow multiple field-exit conditions #*/

el = SO I o

The operator can type in a new value, move the cursor right or left, insert
or delete characters, hit home or end, and when finally done, hit <Enter>,
<Tab>, <Shift-Tab>, <up> or <down> to save or <Esc> to abort.

Actually it’s up to you how you handle the difference between all these exit
methods. You can tell whether it was <Esc> or not by edtval()’s return
value. You can distinguish among the other cases using the edtvalc global
variable:

int edtvalc; Keystroke that ended edtval()

After edtval() returns, you can get the entry results in the buffer that the
sval parameter pointed to.

While edtval() is running, the entry field will use setatr() attribute of
0x0F (bright white on black). For this reason, your pop-up window should
probably have a background color other than black. When edtval() completes
normally it restores the original attribute. If it completes with the
<Esc> keystroke, the entry field stays visible.

The valrou parameter is the address of a keystroke validation function. It
will be called each time the operator hits a key other than one of the exit
keys (see the return value "save" above). The function is passed the code
for the key pressed (see about key codes on page 144) and the buffer
contents so far (NUL-terminated, without that keystroke). Your function
should return a 1 to accept the keystroke or a 0 to reject it. Here are a
few validation functions from GCOMM.LIB that you can use:

isck=validig(c,sval); digit validation routine
int isok; 1=it’s a digit, O=reject
int c¢; key code (ala getchc())
char *sval; string entered so far
isok=validyn(c,sval); yes/no validation routine
int isok; l=it’'s a digit, O=reject
int ¢; key code (ala getchc())
char *sval; string entered so far

Developer’s Guide DEV-165

Here’s the source code for these routines:

int
validig(c,sval) /* is c a valid decimal digit? */
int c;
char *sval;
{
return(c »= 0’ & c <= '9’);
}
int
validyn(c,stg) /* validate c as yes/no (for edtval()) */
int ‘¢;
char *stg;
{
if (tolower(c) == 'y’) {
strcpy(stg,"Yes");
else if (tolower(c) == 'n’) {
strcpy(stg,"No");
return(0);
}

Notice how you can allow a single character to change the entire entry
string -- just write to the buffer pointed to by the sval parameter.

The routine calling your validation routine adds the character to the buffer
if your routine "accepts" it, and doesn’t otherwise. Either way, the entire
string is redisplayed after each keystroke.

When using validyn(), maxlen must be at least 4.
The following routine allows an offline operator to make a multiple-choice
selection using a scrolling window, with up and down arrow keys highlighting

the different choices, and <Enter> making the final choice:

choice=choose (nchoices, choices,upx,upy, lox, loy,escok);
Pop up a window of choices

int choice; index of choice 0..nchoices-1
or -ESC if operator escaped

int nchoices; number of choices

char *choices[]; array of choice

int upx,upy; upper left corner of window

int lox,loy; lower right corner of window

int escok; allow ESC? l=yes 0O=no

The upx,upy coordinates are relative to the tux,tuy coordinates of the most
recent call to the explode() family of routines (page 162). This is done
via the proff() and prat() routines (page 140).

The window boundaries are inclusive. The window does not have to be big
enough to hold all your choices, and if it isn’t, choose() will show
"(more)" at the bottom and scroll when the operator moves the cursor down.
A few global variables are controlling the display attributes:

int selatr; Attribute for scrolling choice bar
int nslatr; Attribute for the other choices

DEV-166 Galacticomm

There are some alternatives and variations to choose(). The first is
choowd () :

choice=choowd(choices,first,upx,upy,lox,loy,escok);
Pop up a window of choices

int choice; index of choice 0..nchoices-1
or -ESC if operator escaped

char *choices[]; array of choice, after the last of
which is a NULL

int first; index of the "default" choice

int upx,upy; upper left corner of window

int lox,loy; lower right corner of window

int escok; allow ESC? l=yes 0O=no

Here too, upx,upy are relative to the window established by explode().

The two differences between choowd() and choose() are: choowd() uses a
NULL to terminate the choices[] array while choose() passes the quantity
nchoices; and choowd() allows you to specify a default starting point in the
choice array, while choose() always starts you at index 0.

The third alternative is to break the choosing up into two pieces:

supche (nchoices, choices, upx, upy,lox, loy,escok) ;
choice=choout(;;

This does exactly what choose() does, with the same parameters and return
value, but you get the chance to sneak some processing in between the
startup and the choosing session. You would only do this if you had
knowledge of some of global variables in CHOOSE.C from the Extended C Source
Suite.

The fourth alternative is to break the choosing up into many pieces. You'd
need to do this in a multitasking environment so that you could be working

on other tasks while »ziting for keystrokes from the operator. Or you'd

need this if you wanted to take some special action on certain keystrokes.
Here you get the best of choose() and choowd() in kit form, with some assembly
required. Here's the equivalent of choose() (with an opticnal starting

point like choowd()):

supchc (nchoices, choices, upx,upy, lox, loy,escok) ;
jmp2chc(first); <- this line is optiona
dspche () ;
cursiz(NOCURS) ;
do {
choice=hdlchc(getche());
while (choice == nchoices);
rstcur();

The jmpZchc() routine establishes the default or starting point, as does the
"first" parameter in choowd(). The new routine dspche() displays the
background of the choice window after startup. Notice it’s polite to turn the
cursor off for the choosing session. The hdlchc() routine handles operator
keystrokes. Of course, you could set things up to be doing other things while
kbhit () is false, and only call getchc() when kbhit() is true. The hdlche()
routine has the same return value as choose() and choout (), except it may
return nchoices to indicate that the choosing session isn’t over yet.

Developer’s Guide DEV-167

Large Model Programming

Most offline utilities from Galacticomm use the Large memory model of Borland
C+ and do not make use of the Phar Lap DOS-Extender. This is a less
complicated development environment than what we use to make MAJORBES.EXE

and all the .DLL files. These .MAK files come with The Major BBS

Developer’s C Source Kit:

BBSRPT.MAK Cffline reports (option 9 from the introductory
menu, includes all eight reports)

GALP&QR.MAK Offline polls & questionnaires analysis (GALP&QR
selection from option 7 of the introductory menu)

Many more .MAK files come with The Major BBS Extended C Source Suite. These
make files call out linker response files too. Remember to use the large
model libraries for offline utilities.

Here are the most important differences in large model programming versus
protected mode programming:

o Smaller memory limits on the program (640K or so total, up to
64K static data)

o Object files reside in \BBSV6\LOBJ instead of \BBSV6\PHOBJ .
To do the compiling and linking steps piece by piece:

To compile a <filename>.C source file that contributes to an
-EXE offline utility program:

CD \BBSV6\SRC or CD \BBSVE\DDD (as appropriate)
CTL <filename> CTL <filename>

(It’'s not a good idea to do "CTL *" because different source
files need to be compiled with different CTXXX.BAT files.)

To relink a <utility name>.EXE file:

CD \BBSV6\LOBJ
LNK <utility name> <other file 1> <other file 2>

or, as appropriate

CD \BBSV6\DDD
LNK <utility name> <other file 1> <other file 2>

Look in the corresponding .MAK file for the utility for the exact
way to link it.

DEV-168 Galacticomm

Lanquage Editor DLLs

When you define a language, you can also define a custom editor program for
editing text or other information in that language. Usually a custom editor
will be associated with the protocol portion of the language, for example
BBSDRAW for all languages that end in "/ANSI", or RIPaint for all "/RIP"
languages.

Language Editors are used by CNF to edit text blocks and by Menu Tree to
create and edit custom menus. Language Editor DLLs will run in protected
mode, and they must behave appropriately. See page 186 for more on
running in protected mode.

To create your own language editor DLL:

1. 1In your language .MDF file (page 26), use the name of your
.DLL file in the language editor command line, as in:

Language Editor: TESTIT.DLL %s

This one directive can do up to three different things. First
it declares that this editor is a DLL editor (as opposed to an
editor that’s an .EXE file or a .BAT file). Second, it
specifies TESTIT.DLL as the DLL that should be loaded in order
to run the editor. And third, your language editor handler
routine may be able to use it to recognize when text should be
edited in your language. When it comes time to edit
something, the language editor command will be passed to

all editor handler routines, and your editor handler

routine will need to decide between "Hey, I'm supposed to edit
the text," or "Nah, some other editor is supposed to edit the
text, not me." More on this later.

By the way, for consistent selection of the proper editor
under Menu Tree, a unique language editor should be associated
with a unique language file extension. For example, the
language editor command line "RIPAINT.DLL %s" should be
associated with, and only with, the language file extension
".RIP". This comes up when you’re trying to define multiple
RIP languages (English/RIP, Spanish/RIP, German/RIP, etc.).

2. Create an editor handler routine. A simple example:

int
tstedt(
char *camand,
char *txtbuf,
unsigned sizbuf)
{
if (Isameto("TESTIT.OLL",command))
return(EONOTME) ;
3
return(edit(txtbuf,sizbuf) ? EOSAVE : EONOCHG);

In this example, edit() is your function for editing the text,
and it returns 1 if it wants to change the text or 0 if it
doesn’t.

Developer’s Guide DEV-169

As mentioned, whenever the Sysop wants to edit some text (when
he types <F2>=EDIT in CNF, or he chooses to "Edit the way

this menu looks" in Menu Tree), the language editor command
line from the appropriate language .MDF file is formatted and
passed to all registered editor handler routines. Each

editor handler has the responsibility to look at the command
and either (A) get to work (in the above example, to call
edit(), and return either EOSAVE or EONOCHG) or (B) pass the
buck (to return EONOTME -- effectively saying "it’s not my
job").

Here are the meanings of the parameters that will be passed to
your editor handler routine:

command This is the formatted language editor command line from
the appropriate language .MDF file. You would
typically look at the first word of this command to
find out if your editor should be working on this
text. If not, you need to return EONOTME. (See
below for all possible return values.)

The "$s" from the language editor command line has been
replaced by a file name by the time it gets to you in the
form of this command parameter. You probably don’t care
about that file name unless txtbuf is NULL.

txtbuf If non-NULL, this is the address of the text in memory,
and also where you should put the text after it has been
edited. This is how CNF will call your language
editor.

If NULL, you should get the text from the file
identified in the command, and write the edited text
back there too. This is how Menu Tree will call your
language editor.

sizbuf This is the maximum size the text should attain. In no
event should your editor handler write outside of the
inclusive memory range txtbuf[0] to txtbuf([sizbuf-1].
(sizbuf does include the room for the terminating NUL.)

The possible return values of your editor handler routine are:

EONOTME This command is for another editor
EOERROR Error occurred (details in edterr[])
EOABORT Operator aborted, recover old data
EONOCHG No change to data, don’t update
EQTRUNC Data truncated (ibsize=original size)
EOSAVE Done editing, save data

EOSAVE+EOPGUP Save data, skip to option above
EOSAVE+EOPGDN Save data, skip to option below
EONOCHG+EOPGUP No change to data, skip to option above
EONOCHG+EOPGDN ~ No change to data, skip to option below

These constants are defined in EDTOFF.H. If you can’t decide which

return value to use among EOSAVE, EOTRUNC, and EONOCHG, use
EOSAVE.

DEV-170 Galacticomm

Here are some global variables associated with editors:

char edterr[]; where to put an error message
(used only when you return EOERROR)

long ibsize; size of original text before it was
truncated (used only when you return
EQTRUNC)

The wording of the edterr[] message should be such that it fits
well into a message like "This CNF Editor command <edterr>:
<editor command from .MDF file>". For example, some appropriate
wordings of edterr[] might be "cannot create CNF00000.FRC", or
"requires more real-mode memory", or "erased the SAVE.TXT file".
We suggest you test each of your error messages with CNF to
make sure they look right.

Your editor handler routine and associated code will need to be in
a C source file that includes:

#include "gcomm.h"
#include "edtoff.h"

3. Register your editor handler routine. Make a function whose
name starts with "init ". It gets passed the address of the
routine to register editor handler routines, and should be
declared EXPORT. The function doesn’t return anything.
Here’s an example:

void EXPORT
init__testit(regrou)
void (*regrou)(EDTHANDLER *edthdl);

(*regrou)(tstedt);

This function will get called the first time someone tries to
use your editor, so you may want to include some more
initialization code here.

A key strategy with each language editor DLL is not to load
any DLL until and unless it’s actually needed. So the first
time the Sysop edits some text that’s associated with a given
language editor DLL is when that DLL is loaded and
initialized.

You may be thinking there’'s a paradox here ("How can the Sysop
pick my editor before I’ve even registered it?!?"). The
resolution is in the multiple purposes of the language editor
command line in the .MDF file. The first time the Sysop tries
to edit something associated with your language editor DLL,
your editor handler routine has not even been registered. But
a special editor handler routine (dlload() in EDTOFF.C) will
(1) recognize this condition, (2) notice that your command
line "TESTIT.DLL <temp file>" calls out a DLL, (3) load

and initialize your DLL, and (4) allow you to get to work
editing the text. From then on, your registered editor
handler will respond to all text edit sessions where your
language is in effect.

Developer’s Guide DEV-171

4. Compile your program using CTPH.BAT, for example:
CTPH TESTIT
5. Make a linker response file:

TESTIT.LNK

\run286\bc3\ 1 ib\cOphdl L +
\bbsv6\phobj\testit
\bbsv6\testit

nul

plhide phapi enfimp /Twd /s /n
\bbsvé\dl ib\nodef

And use it to make your .DLL file:
TLINK @TESTIT.LNK
If you get undefined symbols for Borland Library routines, you
may have to find alternatives to using those routines. See
page 20 about the perils of linking BCH286.LIB in a DLL.
6. 1Install your .DLL file, and the language .MDF file, on the BBS
computers where you want the editor to be available.

.MSG File Reading and Writing

If your offline utility needs to examine the value of a CNF option direct
from the .MSG file, as opposed to the compiled .MCV file, you can use
msgscan().

value=msgscan(filnam,name); Read a CNF option from an .MSG file
char *value; value of option (or NULL=can’t find)
char *filnam; file (include .MSG extension)

char *name; name of option

To read the cption from the .MCV file, use the getmsg() and xxxopt()
routines, described starting on page 65. It’s usually more convenient to
use getmsg() or the xxxopt() routines if you are reading a .MSG file that's
part of the same product release. That is, if your .MSG file and your
offline utility are sold and updated as a package.

On the other hand, if your product’s utility is reading another product’s
-MSG file, msgscan() should be used. An example would be any offline Add-on
utility that needs to know the values in BBSMAJOR.MSG. Using msgscan()
allows your utility to continue to work even after the .MSG file is updated
to a new version (as long as the option you’re changing has not been
obscleted of course).

If you're writing an offline utility and you need to change the value of
CNF options, you could use the setenf() and applyem() functions.

setcnf (name,value); Specify a CNF option change

char *name; name of the option

char *value; new value for the option
applyem(filnam); Set the CNF options in this file
char *filnam; file (include .MSG extension)

DEV-172 Galacticomm

Here's an example of using these routines to set the values of several CNF
options in different .MSG files.

setcnf ("GROUP3", "MODEM") ;

setcenf ("BAUD3","19200");

setcnf ("LOCK3","YES");

setcnf ("INIT3", "AT&FE0S0=0S2=255X65R0B1") ;
setenf ("SUPCLS", "PROSPECT") ;
applyem("BBSMAJOR.MSG") ;
applyem("BBSSUP.MSG");

When you bring the BBS up again, new .MCV files will automatically be
generated by BBSMSX.

Up to 100 setenf() changes can be accumulated before you call applyem().

If you want to change more than 100 options, you can specify them in lots of
100 or fewer. (Calling applyem() sets things up so that the next call to
setenf () starts with a clean slate of specified changes.)

As you can see, you can specify changes to several different options in
several different files. Then you can call applyem() on the file(s) where
the opticns are stored. If you accumulate option changes for multiple
files, beware of options with the same names in two different .MSG files
(applyem() would change them both to the same value).

You can change the value of any type of CNF option with setenf () and

applyem(). But if you change the value of a type 'T’ text option, only the
language 0 version will be affected.

Developer’s Guide DEV-173

10. MORE ROUTINES AND VARIABLES

Character and String Routines

match=sameas (stgl,stg2); case-ignoring string match
int match; return code: true if strings are same
char *stgl,*stg2; strings to test for matching
sameas() returns true if the two strings are the same, ignoring letter case,
for example sameas("Fred W. Jones","FRED W. JONES") == 1.
match=sameto(shorts,longs); case-ignoring substring match
int match; true if shorts = first part of longs
char *shorts; "short string": entirety must match
char *longs; "long string": may have excess on end
The sameto() function is like sameas(), but it allows the first parameter to

be just a portion of the second. For example:
sameto("good","gooder") == 1
sameto("good", "good enough") == 1
sameto("best","best") == 1

sameto("badder","bad") == 0
sameto("women", "womanhood") == 0

Another variation:
match=samend(longs,ends);

The samend() routine compares endings of strings, asking if the first string
ends with the second string, ignoring case. Examples:

samend("the end","end") == 1
Samend("dogs" ; “S") — 1
samend("gooder","ER") == 1

samend("end","the end") = 0
Samend("sheep" ' "S") — 0

We remember the parameter order for sameto() and samend() by thinking of the

prefix (shorts) sitting next to the prefix side of the long string (longs),
therefore to the left of it in sameto().

DEV-174 Galacticomn

In samend(), we think of the suffix (ends) sitting next to the suffix side of
the long string (longs), therefore to the right of it. This way
sameto("beg","beginning") and samend("ending","ing") are both true.
found=samein(subs,string); Search a string for a substring
(case-ignoring)

int found; 1=found O=not
char *subs; substring
char *string; string

This function searches the string for
returns 1 if it finds any. Examples:

any occurance of the substring, and

samein("good", "gooder") == 1
samein("s","UNITED STATES") == 1

samein("can’t","cannot") == 0
samein("badder","bad") == 0

sprstg=spr(ctlstqg,pl,p2,...,pn);
char *sprstg;

char *ctlstg;

TYPE Pl,p2,.«., PN}

sprintf-like string formatter utility
result string ptr (max 120 bytes)
control string (%1, etc. allowed)
sprintf-type parameters (max 12 bytes)

This routine is frequently used itself as an argument to prf(), prfmsg(),
catastro(), or other "printf" format functions. Those functions do not
support long integer or floating point conversions ("%1d" or "%f"), but spr()

does. HWarning: the string created by spr() must not exceed 120 bytes,
including the terminating '\0’. Violation of this rule may have insidious
results.

stzcpy(dest,source,nbytes);
char #*dest;

char *source;

int nbytes;

Copy a string, with limit
where to put it
the string
size of dest, including "\0’

if the source string takes up more than nbytes of space (including its NUL),
then a truncated version is copied to dest. If the source takes up less,
then the remaining bytes of dest are filled with NUL’s. The dest buffer
always gets at least one NUL at the end (assuming nbytes > 0 -- if nbytes <=
0, then stzcpy() does nothing). Exactly nbytes bytes are written to dest
(if nbytes > 0).

Use the following routines for parsing character strings of one or more
"words" separated by whitespace characters:

pastwhite=skpwht(string);
char *pastwhite;

char *string;

pastword=skpwrd(string);
char *pastword;

char *string;

Developer’s Guide

Skip past whitespace

pointer to the first NUL or non-
whitespace character in the string
NUL-terminated character string

skip past non-whitespace

pointer to the first NUL or
whitespace character in the string
NUL-terminated character string

DEV-175

stg=12as(lnum); convert a long integer to an ASCII
decimal string of digits

char *stg; where to store the result

long lnum; input long integer

This function converts a 32-bit signed integer to a decimal character string.
Note that:

spr("%1ld",lnum) .. is the same as .. 12as(lnum)

Both spr() and l2as() use a 4-stage rotating-buffer technique to avoid the
problem of multiple calls pointing to the same physical location. This means
you can have up to 4 calls in a single parameter list before overlap will
cause difficulties. For example:

prf("shares traded today: %s %s %s",l2as(nyex),l2as(amex),l2as(otc));

Each of the three calls to l2as() will return the address of a different
buffer -- not overlap three conversions into the same buffer. (Would you
have thought of this problem? If not, be careful! Myself, I cannot answer
whether this feature first came about by shrewd foresight or humbling
debug.)

ptr=lastwd(stg); get the last word of a string
char #*ptr; pointer to the last word
char *stg; the input string

lastwd() finds the last "word" in a string. The return value points to the
last nonblank character preceded by a blank (or it points to the beginning of
the string if it can’t find this).

xltctls(txtbuf); translate ASCII control characters
char *txtbuf; text buffer (input and output)

This routine translates " preceded letters into control characters. For
example, the two-character sequence ""G" will be translated, in-place, to the
single CTRL-G (ASCII BEL) character.

valid=isselc(c); is ¢ a valid menu-select character?
valid=istxvec(c); is ¢ a valid text-variable character?
valid=isuidc(c); is ¢ a valid user-ID character?

int valid; 1l=yes 0O=no

int c; character (all routines will return

false for non-ASCII values of c)
These are the routines we use for checking input strings for valid
characters. International characters in the extended ASCII set are
supperted here.

Here are some more character-handling and string-handling routines:

yes=alldgs(string); Is this string all decimal digits?
int yes; l=yes 0=no, has other characters
char *string; NUL-terminated string

DEV-176 Galacticomm

oddparity=odd(somebyte) ; Compute odd parity

char somebyte; a byte
char oddparity; a byte with odd parity and with
the same lower 7 bits as somebyte
rmvwht (string); Remove all whitespace characters
char *string; string (conversion is in-place)
nremoved=depad(string); Remove trailing blanks from string
int nremoved; number of blanks removed
char *string; NUL-terminated string
bufptr=unpad(string); Remove trailing blanks from string
char *bufptr; copy of string pointer
char *string; NUL-terminated string
sortstgs(strings,nstrings); Sorts a bunch of strings by re-
arranging an array of pointers
char *strings[]; array of pointers to the strings
int nstrings; number of strings

See also the memory handling routines movmenm(), setmem(), and repmem() on
page 45.

Real-Time Routines (rtkick(), rtihdlr(), interrupts)

rtkick(time, rouptr) "kick off" routine after time delay
int time; number of seconds before "kickoff"
void *rouptr(); pointer to routine to be kicked off

Naturally the time delay here is not wasted. Control returns to your calling
routine almost instantly, and the specified number of seconds later (plus or
minus a few), the specified routine is invoked. The invocation actually takes
place at the call to prertk() found near the bottom of the main loop in
main() in MAJORBBS.C.

To make a routine get called at regular intervals, your initialization code
could call rtkick() on the routine, and then the routine could call rtkick()
on itself. Use time=60 for the routine to run once a minute, or time=1 for
once a second.

rtihdlr(rouptr); Register a real-time routine
void (*rouptr)(void); routine to call at 18 Hz

If you have a routine that you need to execute more often than once a
second, you could register it with rtihdlr(). Once you start this, it runs
the entire time the BBS is up (don’t keep calling rtihdlr() on the routine
like you could do with rtkick()). This routine will be running at interrupt
level, so don’t try any DOS or GSBL calls except the chixxx() routines (see
the GSBL manual). And be sure the routine uses as short a time as possible,
or the BBS will lose its real-time responsiveness.

Developer’s Guide DEV-177

dsairp() Disable interrupts
enairp() Enable interrupts

These routines can be used to disable interrupts for very brief sequences of
code. HWarning: disabling interrupts for too long can cause you to lose
incoming characters at high baud rates. For example, 300 microseconds is too
long for 38,400 baud.

tix64k=hrtval(); Read the free-running 65KHz timer
unsigned long tix64k; upper word counts seconds,
lower word counts 1/65536 seconds

This routine reads the GSBL long integer variable btuhrt while interrupts
are disabled, in order to avoid skew. You should almost always use hrtval()
in place of referencing btuhrt. To measure the time between two events you
can call hrtval() at each event and compute the difference between the
values (later value minus earlier value). The result will be a count, in
1765536 second units, of the time between the two events. Of course, this
won’t work if more than 65536 seconds elapse between calls (about 18 hours).

Time and Date Routines

date=today(); Find out today’s date
int date; YYYYYYYMMMMDDDDD coding for today

This returns today’s date in the format that DOS uses for dates:

YYEIYYY e (Year-1980) * 512 Representing 1980 through 2107
——————— MMMM----- Month * 32 Representing 1 through 12
——————————— DDDDD Day of month Representing 1 through 31
YYYYYYYMMMMDDDDD Code for date

day=daytoday(); Find out what day of the week it is
int day; 0=Sunday 6=Saturday

time=now(); Find out what time of day it is

int time; HHHHHMMMMMMSSSSS coding for time

This returns the time of day in the format that DOS uses for time:

HHHHH=~ === === — Hour * 2048 Representing 0 through 23
————— MMMMMM----- Minute * 32 Representing 0 through 59
fffffffffff S55S5S 2-second intervals Representing the even num-

bers 0 through 58

HHHHHMMMMMMSSSSS Code for time
ascdat=ncdate(date); Encode date into "MM/DD/YY"

char *ascdat; local buffer for date

int date; YYYYYYYMMMMDDDDD coding (see above)

DEV-178 Galacticomm

asctim=nctime(time);
char *asctime;
int time;

ascdat=ncedat (date);

char *ascdat;
int date;

date=dcdate(ascdat);
int date;

char *ascdat;

time=dctime(asctim);
int time;

char *asctime;

count=cofdat (date);
int count;
int date;

date=datofc(count);
int date;
int count;

Encode time into "HH:MM:SS"
local buffer for time

HHHHHMMMMMMSSSSS coding (above)

Encode date into "DD-MMM-YY"
(European style)
local buffer for date

YYYYYYYMMMMDDDDD coding (see page 178)

Decode date from "MM/DD/YY"

YYYYYYYMMMMDDDDD coding (see page

or -l=invalid date format
date string

Decode time from "HH:MM:SS"

HHHHHMMMMMMSSSSS coding (see page

or -l=invalid time format
time string

Count of days since 1/1/80
number of days since 1/1/80

YYYYYYYMMMMDDDDD coding (see page

Compute DOS date

YYYYYYYMMMMDDDDD coding (see pag

number of days since 1/1/80

See also page 182 for reading and setting a file’s time and date.

Numeric Routines

smaller=min(a,b);
bigger=max(a,b);

absval=abs (signednum) ;

newcrc=calcrc(oldcrc,ch);
int newcrc;

int oldcrc;

char ch;

Find the smaller of two numbers
Find the larger of two numbers

Since these are implemented as

178)

178)

178)

178)

macros, the numbers can be all int,

all unsigned, or all long.

Find the absolute value of a
signed integer (int or long)

Iteratively calculate a 16-bit CRC

CRC on N+l bytes
CRC on N bytes
N+1'th byte

This routine calculates a 16-bit CRC based upon the polynomial

x"16+x"12+x"5+1. This routine is used to support the flash protocol for
(Flash game capability is available with the
This is the same CRC as is computed

games like Flash Attack! (tm).

Games and Entertainment Collection.)

for the XMODEM-CRC protocol.

Developer’s Guide

DEV-179

Text File Scanning

This suite of routines can be handy for scanning one or more text files,
especially if you're looking for lines that start with some prefix string.

We use these routines to scan all .MDF files for all the lines we're
interested in. (For a really thorough demo of the tfsxxx() routines, see how
this is done in INTEGROU.C.)

This is not a good thing to be doing for online user processing however. For
cne thing, the work is unbounded (how many files? how many lines?) so it

could hold up the BBS for an unacceptably long time. For another, you can't
have multiple text file scanning operations going on at once -- they work off
of global variables in TFSCAN.C (available with the Extended C Source Suite).

But the text file scanning routines can be real handy for offline processing,
for initializing things before the BBS comes up, or for nightly cleanup
operations.

nfiles=tfsopn(filespec); Prepare to scan 1 or more text files
char *filespec; file spec (may contain wildcards)
int nfiles; number of files matching file spec
tfs=tfsrdl(); Read next line from file(s)

int tfs; returns latest value of tfstate
int tfstate; Scanning state, with these values:

TFSBGN tfsopn() was just called, identifying 1 or more files
TFSBOF preparing to scan a file (name can be found in tfsfb.name)
TFSLIN scanning lines of a file (line is in tfsbuf)

TFSEQF done scanning a file

TFSDUN all files have been scanned

char *tfsbuf; Line read in by tfsrdl(), if tfsrdl()
returned TFSLIN

When you call tfsrdl(), the state value can be found either from its return
value, or from the global tfstate variable. You should keep calling tfsrdl()
until it returns TFSDUN. Other than that, the most interesting state/return
value is TFSLIN. This means tfsrdl() has done it’s duty and retrieved a line
of text from the file or set of files. That line is available in tfsbuf. The
return values TFSBOF and TFSEOF could be useful if you needed to do know when
the scanning reached file boundaries.

If you're locking for a specific prefix, or set of prefixes, you can use
tfspfx() to find it and to isolate what follows the prefix:

found=tfspfx(prefix); Is the current line prefixed with this?
char *prefix; Prefix string
int found; l=yes, O=no
if yes, tfspst points to what follows
the prefix
char *tfspst; pointer to string following the prefix,

with preceding white space removed

For example, if the line you read in was "DLL=GALBLAST", then tfspfx("DLL=")
would return 1 and tfspst would point to "GALBLAST".

DEV-180 Galacticomm

Suppose you needed to scan all .MDF files on the BBS and pass all module names
through a routine called modnam() and all developer names through another
routine called develn().

if (tfsopn("*.MDF") > 0) {
while (tfsrdl() != TFSDUN) {
switch(tfstate) {
case TFSLIN:
if (tfspfx("Module Name:")) {
modnam(tfspst) ;

}

else if (tfspfx("Developer:")) {
develn(tfspst);

}

break;

}

Notice how one or more spaces may follow the colons in the .MDF files, but
they are skipped by tfspst.

If you have multiple levels of prefixes, this routine might be handy:

tfsdpr(); strip the prefix off of tfsbuf and
prepare for sub-prefixes (the dpr
stands for "deeper")

This routine is used in INTEGROU.C to isolate all of the "Language" lines in
the .MDF files with one tfspfx() call, and then handle them individually with
more tfspfx() calls on the sub-prefixes. 3

If you don't need to exhaustively scan all of the file(s) (say you're only
interested in one occurance of line starting with a certain prefix), you can
abort scanning with tfsabt():

tfsabt(); abort text file scanning
This just makes sure that if a file is opened that it gets closed, which is

usually a good idea. Otherwise, you need to keep calling tfsrdl() until it
returns TFSDUN.

Disk I/0
bufptr=mdfgets (buffer,size,fp); Read a line of text from a file
char *bufptr; copy of buffer
char *buffer; where to store the line
int size; maximum size, including ’\0’
FILE *fp; file (from fopen())

This is just like the standard fgets(), except it uses ’\r’ as a line

terminator (a hard carriage return on The Major BBS), and it won’t have a
line terminater on the last line if the file doesn’t have it.

Developer’s Guide DEV-181

got=fgetstg(buffer,size,fp); Read a NUL-terminated string from file

int got; l=got it OK, O=error or EOF
char *buffer; where to store the line

int size; maximum size, including '\0’
FILE *fp; file (from fopen())

This reads a NUL-terminated string from what’s obviously not strictly an
ASCII text file, and stores it in the buffer. The NUL is stored too, but
the string will never take up more than size bytes. If it’s too big, it
will be truncated with a forced NUL at buffer[size-1].

nbytes=getdfre(diskno);

long nbytes;
int diskno;

cntdir (path);
char *path;

long nunfils;
long numbyts;
long numbytp;

drive=drvnum(path);
int drive;
char *path;

clbyts=clsize(drive);
unsigned clbyts;
int drive;

realsiz=clfit(siz,clbyts);
long realsiz;

long siz;

unsigned clbyts;

ok=setdtd(fname,time,date);
int ok;

char *fname;

int time;

int date;

ok=settnd (fname,gmt70);

int ok;

char *fname;
long gmt70

timendate=getdtd(handle);
long timendate;

int handle;

DEV-182

Find out how many bytes are free
on disk
number of bytes
disk number (O=default 1=A: 2=B:)

Count a set of files
path specification (wildcards ok)
total number of files counted
total number of bytes counted
greater number of bytes occupied by
the files, considering cluster size

Determine drive number from the path
O=current, 1=A:, 2=B:, 3=C:,...
any DOS file specification

How big are the clusters on disk?
number of bytes per cluster
O=current, 1=A:, 2=B:, 3=C:,...

Total space used by a file
siz rounded up to the next cluster
useful size of file
cluster size (from clsize())

Set the time and date for a file
(file must not be open at the time)
l=0k O=couldn’t find file.
file path
HHHHHMMMMMMSSSSS coding (see page 178)
YYYYYYYMMMMDDDDD coding (see page 178)

Set the time and date for a file
(file must not be open at the time)
1=ok O=couldn’t find file.
file path
Number of seconds since midnight
1/1/1970, GMT

Get a file’'s time & date
32-bit number encoding date<<l6
and time:
HHHHHMMMMMMSSSSS coding (see page 178)
YYYYYYYMMMMDDDDD coding (see page 178)
file handle from an fopen()'d file
(returned by fileno(fp))

Galacticomm

gmt70=gettnd(handle);
long gmt70

int handle;

root=fnroot (filnam);
char *root;
char *filnam;

fnam=fnwext (filnam);
char *fnam;

Get a file’'s time & date
Number of seconds since midnight
1/1/1970, GMT
file handle from an fopen()’d file
(returned by fileno(fp))

Extract 1-8 char file root
extension and path prefix removed
file name or entire file path

Extract file name with extension
name after the path prefix

char *filnam; file name or entire file path

rsvd=rsvnam(filnam); Check if a file name is reserved
int rsvd; l=reserved, don’t use, 0=OK to use
char *filnam; file name or complete file path

This routine checks through the DOS list of device drivers and other
reserved names to make sure a proposed file name will not be misinterpreted
as a device. 1It’s a great idea to use this routine especially if the file
name is something a user typed (even if it’s the Syscp user). Did you know
that writing to "PRN.TXT" will output to your printer? Calling
rsvnam("PRN.TXT") will return 1 and catch this and other disasters.

The following routines can be used to find out if a file exists, or to get
help from DOS with breaking down a wildcard file specification (such as
"* EXE") into its component files.

yes=fndlst(&fb,filespec,attr); Any files in this filespec?

int yes; l=one or more, O=none
struct fndblk fb; "findblock" structure
char attr; attribute mask (see below)

yes=fndnxt (&fb);
int yes;
struct fndblk fb;

Any more files in this filespec?

l=yes O=no more
same structure passed to fndlst()

The fndlst() and fndnxt() functions make use of the following data
structure, defined in DOSCALLS.H:

struct fndblk { /* used by fndlst, fndnxt in datntim.c */
char junk([211; i xf
char attr; /* file attribute (see masks below) Y
unsigned time; /* time in HHHHHMMMMMMSSSSS format *y
unsigned date; /* date in YYYYYYYMMMMDDODD format */
long size; /* size in bytes */
char name[12+1]; /* name of file "FFFFFFFF.EEEY *f

i

After either routine returns 1, you can consult the name, size, date and
time fields of the fb structure for information on the file.

Developer’s Guide DEV-183

The attr paramter to fndlst() restricts the search to certain types of files
(or more accurately directory entries -- fndlst() and fndnxt() are really
directory scanning routines). Here are the possible bit components to the
attr parameter of fndlst(), and to the attr field of the fndblk structure.
These are also defined in DOSCALLS.H:

#define FAMRON 0x01 /* File attribute: read only i
#define FAMHID 0x02 /* File attribute: hidden */
#define FAMSYS Ox04 /* File attribute: system *f
#define FAMVID 0x08 /* File attribute: volume id x/
#define FAMDIR 0x10 /* File attribute: sub-directory */
#define FAMARC 0x20 /* File attribute: archive »/

The only useful values we ever found for the attr parameter of fndlst() are
0, meaning roughly to scan for files only, not subdirectories or volume
ID's, or FAMDIR, meaning to check if a given directory name exists. You can
refer to a DOS technical manual on interrupt 21H, function 4EH, for details
on the other bits.

Everything Else

cpu=cputype(); Returns 88, 186, 286, 386
int cpu; depending on what type of processor
you run it on (486's return 386)

seterit(); Set the DOS critical error handler
to a routine that pops up a window
and is loads more friendly than
"Abort, Retry, Fail". For real mode
only -- don’t use with Phar Lap.

pascrit(); Set the DOS critical error handler
to a routine that retries three
times then pops up a friendly
window. Must run with the GSBL
(Software Breakthrough).

DEV-184 Galacticomm

11. RELIABILITY

Some Philosophy on Debugging

Your best debugging work takes place long before you test-run any of your
software. A programming task that’s well thought through and meticulously
coded has the best chance of long term success.

© Design with vision and foresight.
0 Code with attention to detail.
o Test thoroughly.

Debugging work is inevitable. But you can save yourself lots of time and
grief if you avoid slipping into the habit of using debugging as a
programming tool. Routines should account for all possible conditions and
be 100% predictable in the mind of the programmer before they are executed.

You're probably trying to increase your programming speed just like we are.
Nothing will help your overall productivity more than an ingrained habit of
completing highly reliable foundations before you proceed to use them.

There are many techniques for making your foundations highly reliable: code
walk-throughs, rigorous testing by the developer, line-by-line testing of
source code, branch-by-branch testing, routinely retesting "repaired" code,
alpha-testing (in-house), beta-testing (by motivated customers). The goal
is to get software done fast, put it to use, and move on to other projects,
without your customers having to find the problems and you solving them over
the phone.

Programming Tips for The Major BES

There are several unique things about the programming environment of The
Major BBS. The multi-user single-tasking aspects mean that your code can’t
wait very long for any one thing to happen.

Once you become proficient in proegramming for The Major BBS, there are a few
classes of problems you'll want to be on guard against. If you review these
problems and develop an eagle eye for them, then your code can be much more
reliable and free from frustrating bugs.

Developer’s Guide DEV-185

Don’t forget to set the message pointer with setmbk():

Hrong way Right way
int int
hdlstt(void) hdlstt(void)
{ {
primsg(NCTAVAIL); setmbk (lclmb);
return(0); prfmsg(NOTAVAIL);
} return(0);

}

(lclmb is the return value of
the original call to opnmsg())

Remember to set the database pointer with setbtv():

HWrong way Right way
int int
lockup(char *name) lookup(char *name)
{
return(gegbtv(name,0)); setbtv(gnfbb) ;
} return(gegbtv(name,0));
}

(gnfbb is the return value of
the original call to opnbtv())

Don’t call outprf() multiple times (resulting in double prompts):

HWrong way Right way

prfmsg (GREETING) ; prfmsg(GREETING) ;

if (problem) { if (problem) {
prfmsg (WARNING) ; prfmsg (WARNING) ;
outprf (usrnum) ;

} outprf (usrnum) ;

outprf(usrnum);

General Protection Faults

The best thing and the worst thing about protected mode operation is the
"General Protection" fault, or GP. Protected mode is designed to halt at
the slightest sign of a program gone awry. The first time you try to
unravel and debug a GP will be an adventure. But after all the work of
tracking it down, it will probably lead you direct to a bug in your code.

what is a GP?

A General Protection fault is the computer CPU's way of saying "I give up"
or "I can't do this". Usually it has to do with an invalid or restricted
memory address. (There are other GP causes, like privilege violation,
executing the wrong code, or "switching to a busy task", whatever that is.
If you're getting one of these, your program has probably gotten pretty
out of control.)

DEV-186 Galacticomm

GP's don't catch every bug, not by a long shot. But they can catch certain
thorny problems way before they get out of hand. The worst kinds of bugs to
find are interrmittent with inconsistent symptoms: you can’t make thenm
happen when you want to, and it’s always something different when they go
wrong. Or this variation: you make what should be an irrelevant
modification, perhaps to add some debugging or probing code, and the
symptoms change. This is exactly what can happen from random unintentional
menory reads or writes, and this is exactly the kind of thing that a GP is
likely to catch in the act, with a bull’s-eye on the instruction that made
the memory reference. With some patience, you can sift through the clues at
the scene of the crime and find out exactly what went wrong. This chapter
is all about helping you get started with GP detective work.

Kinds of GP’s

Illegal memory accesses can happen in hundreds of squirrely little ways,
some of which may even be completely harmless in a program running in real
mode. In protected moede, however, they cause a GP fault. Here are three
common programming errors that can result in GP's.

A. NULL passed to a routine that uses it as a pointer

For example, consider the following code fragments:

blah(margv[0],NULL) ;

blah(stgl,stg2)
char *stgl, *stg2;
{
if (strcmp(stgl,stg2) == 0) {

This will cause a GP when stremp() is called, because although
NULL is not an illegal value for a pointer, to access

memory through it is an illegal operation. Right? When you
pass NULL as a pointer, you never mean "go to the memory at
absolute memory location zero and look at whatever bytes are
there." You mean "this here is the absence of a pointer".
This is not a problem in real mode ordinarily because absolute
memory location zero has some garbage in it that is unlikely
to match a normal string. Referring to NULL may be similar to
referring to the empty string, "", and it is possible, when
writing real mode programs, to form the bad habit of using the
two interchangeably. Protected mode is not going to let you
get away with this.

A special case of this class of problem worth noting is the use
of any of the macros from STDIO.H: getc, putc, getchar,
putchar, ferror, feof, or fileno, with a NULL file pointer. You
might think that attempting to do file I/O with a NULL or
garbage file pointer would have no result. It turns out that it
results in arithmetic being done on some illegal location in
memory, which, in protected mode, will cause an immediate GP.

B. Accessing off the front or end of an array

The most common way this happens in practice is if you use
invalid array indices. However, not every invalid array

Developer’s Guide DEV-187

access attempt will cause a GP. It is complicated, because
protected mode will only detect an attempt to go outside a
whole segment, and one segment may contain several arrays,
variables, structures, etc. A classic example of this kind

of bug is the innocent looking little binary search routine in
none other than Kernighan & Ritchie’s revered tome "The C
Programming Language", first edition, page 129 (we reformatted
the code to match our own formatting standards):

1 struct key *binary(word,tab,n)
2 char *word;
3 struct key tab[];
4 int n;
5
6 int cond;
7 struct key *low,*mid,*high;
8
9 low=&tab[0];
10 high=&tab[length-1];
11 while (low <= high) {
12 mid=low+(high-low)/2;
13 if ((cond=strcmp(word,mid->keyword)) < 0) {
14 high=mid-1;
15 }
16 else if (cond > 0) {
17 low=mid+1;
18 }
19 else {
20 return(mid);
21 }
22 }
23 return(NULL);
24}

This code begins to come unglued if the sought keyword fits
sequentially before all entries in the sorted tab[] array, and
the tab[] array just happens tec physically reside at the
beginning of a segment or selector (that is, its offset is
0x0000). Then the instruction in line 14 eventually does
this: high=&tab[-1]. That pointer computation results in an
offset of 0XFFFF or thereabouts. This does not generate a GP
yet, because the "high" pointer is not dereferenced.

But now things go from bad to worse, because the test in line
11, which is supposed to fail and halt the loop, instead
succeeds, and mid is inexorably dragged upward until it points
beyond the end of the region allowed for the selector.
Finally, a GP occurs in the stremp() routine invoked in line
13.

To fix this code, you could put the following three lines
between lines 13 and 14:

13.1 if (mid == low) {
13.2 break;
13.3 }

And, to be truly thorough about it (in protected mode this tends
to be a good idea), you can guard against the possibility that
the top of the table is flush up against the high bound of a

DEV-188 Galacticomm

full 64K data segment by inserting the following between lines

16 and 17:

16.1 if (mid == high) {
162 break;

16.3 }

Another example of this is a situation in which you wish to
truncate a string to a certain maximum length, without knowing
in advance just how much storage has been allocated for the
string. Consider the following code fragments:

speak("hi there");

speak (stg)
char *stg;
{
char temp;

temp=stg[20];

stg[20]="\0";

printf(stg);

stg[20]=temp;
}

In real mode, this is not a problem because even if the memory
location that is 20 beyond the start of stg is in some other
segment, you are putting it back to what it was when you are
through. In protected mode, though, this type of thing can
generate an immediate GP, depending on how close the "hi there"
string is to the end of the segment in which it is allocated.

C. Too few arguments in a call to printf() or prf() or prfmsg()

If your control string has more %s place-holders in it than there
are pointers in your arqument list, the machine will find itself
picking up random stack contents as a pointer, and accessing
memory there. Actually, the mere loading of a random stack
value into a selector register is likely to generate a GP right
off; if not, then accessing memory through a random offset is
likely to exceed the length bounds of the selected segment,

Sysop GP Handlin

When a Sysop of The Major BBS wants maximum up-time for his BBS, he sets the
offline Hardware Setup option GPHDLR to YES:

GPHDLR Continue operation after "GP" €IrOTS? .vuveuecvsvnsvneenns YES

This causes the BBS to attempt to recover from GP errors after reporting
them in the Audit Trail (see the System Operations Manual for details). To
be on the safe side, the user being serviced at the time of the GP is logged
off immediately, and his channel is reset. But the BBS stays up and

running (or tries to).

This also helps with hacker protection if a user discovers a way to generate
an otherwise harmless GP: with GPHDLR set to YES, a GP simply logs him off.

Developer’s Guide DEV-189

Developer GP Handling

But developers should use GP's on their demo or support BBS to maximum
advantage for tracking down bugs.

GPHDLR

Continue operation after "GP" errors?

NO

In this mode, extensive information on the GP is captured in a text file
\BBSV6\GP.OUT.

Reading a GP.OUT Report

A GP is a software interrupt 13 (coincidence?).

You could also get other

software interrupts for other disastrous conditions like interrupt 12 for a
(One possible cause of interrupt 12 is an infinitely recursive

stack fault.
routine.)

But only a GP can provide you with a lengthy report.

Keep in mind that GP.OUT accumulates reports, so you’ll want to look at the
bottom of the file.

Here is an example of one report in a GP.OUT file:

BBS GP @ 2d4f:031a EC 0000 (recorded 12/16/93 17:11:17)

GPled between 204:0000 _INIT__TELECON and 0000:0000 Unknown
AX=0000 BX=0000 CX=0000 DX=0787 S1=0005 DI=0054 BP=2a88 ES=0000
DS=2d57 Flags=3246
Current CS:IP==>26 83 Of 01 b8 f7 04 8e c0 26 c4 1e 87 08 26 c7

BBS Version: 6.20

User 3 channel 00 User-1D "Sysop"

Online level 6, state 5, substate 0
MSG:galtlc.mev/-1

Module "Teleconference"
Input "T#

0167=C: \BBSV6\MAJORBBS . EXE
0717=C:\BBSV6\GALGSBL.DLL
073f=C:\BBSV6\BBSBTU.DLL

:\BBSV6\DOSCALLS
:\BBSVO\GALMSG.DLL

2cff=C:\BBSVA\GALRSY.DLL
2d3f=C:\BBSVE\GALTLC.DLL
2d6f=C:\BBSVE\GALTXV.DLL
2d97=C:\BBSV6\GALUIE .DLL
2dbf=C:\BBSVE\GALXIT.DLL
2de7=C:\BBSV6\GALTST.DLL
Stack:
0707:2a78 O04ff 0746 O4ff
0707:2a88 >2aaa< Oba3 0197
0707:2a98 0000 4f54 0050
0707:2aa8 04f7 »2ac0< 529a
0707:2ab8 04f7 1b32 0003
0707:2ac8 000e 4f84 018f
0707:2ad8 018f 0707 1bl4
0707:2ae8 0000 0000 0000
0707:2af8 0707 0000 O11f
0707:2b08 0000 2b36 0707
0707:2b18 1b32 0707 1b32
0707:2b28 0707 0587 0707
0707:2b38 0000 0000 fdec
0707:2b48 ---- ---- ----
0707:2b58 ---- ----
0707:2b68 ---- ----
0707:2b78 ---- ----
0707:2b88 ---- ---s -
Routines:
0197:07c5 _GOPAGE <
018f:4e23 _NXTLOF <
018f:3487 _HDLINP <
018f:2502 _KILETC <
0000:0000 Unknown <
DEV-190

0054
O4ff
2aaa
018f
0000

2147
0000
0029
0039
>2ace<

>2b30< 3099

0000
011f
966b
0707
1b14
000f
o077

0197
018f

018f:

o18f
016f

0000
96¢c7
0017
0001
2b36
>0000<

:0ba3
:529a

13099

:014f

status 3

04ff
098a
039f
28ef
3579
018f
0000
0017
0e29
1330
448
014f

0197:0e3d _DSPMNU
018f:53be _CURUSR
018f:35e4 _CLRXRF
018f:3145 _CONDEX
016f:0155 __ CLEANUP

A A A A A

Galacticomm

GP Location

The first line of GP.OUT has the CPU instruction pointer CS:IP contents,
which reflect the location (address) of the fault. Usually this points to
an instruction that the CPU refused to execute for some reason. This line
also tells you when the GP occurred. If you see GPCNT here, then the Sysop
has GPHDLR set to YES and the GP reported is not the first (and perhaps not
the most informative -- have them set GPHDLR to NO and get you another
GP.OUT).

GP Vicinity

The second line of GP.OUT attempts to place the CS:IP between two public
symbols that you can search for in your source files. Cnly symbols declared
EXPORT are included here though. The only EXPORT routine in your whole DLL is
probably your init xxx() routine (page 17). If the GP occurred in a

source file with no EXPORT routines, you're likely to see some irrelevant
addresses. You can still get an idea what file the GP is in from the DLL
list. More on that below.

For a reproducible GP (one you can make happen any time you want), you might
declare some routines EXPORT just to get more information here. Often,

narrowing the problem down to one routine is enough to start studying the
routine and to find the problem.

Registers

This section shows the contents of the assembly language registers right
when the GP occurred.

Code at the GP Location

Here on the fifth line of GP.OUT are 16 bytes of executable code starting
from the GP location. This includes the actual instruction that caused the
GP. This object code can come in handy when searching for the exact
locations in an assembly listing (more below).

User Conditions

The next section of GP.OUT show information on the most recent BBS activity on
a user’s channel.

BBS Version: 6.20
User 3

BBS software version
User number (usrnum, see page 39)

channel 00 Channel number (hexadecimal, page 39)

User-ID "Sysop" User-ID on channel most recently serviced
status 3 Status code from the channel

Online level 6 usrptr->class, 6 is "ACTUSR" -- online and active
state 5 usrptr->state (see page 31)

substate 0 usrptr->substt

MSG:galtlc.mcv the current .MCV file being read

/-1 the last message read from this file (-l=nocne)
Module From the usrptr->state code (5 in this example)
"Teleconference"

Input "T" Most recent status-3 input line on the BBS

Developer’s Guide

DEV-191

The usrptr->state code represents the module the user was in. Sysops choose
the module by name when they create a module page during offline Menu Tree
Design. Module names are also listed in the Miscellaneous Statistics screen
of the BBS console.

In many cases this information at the top of a GP report can be very helpful.
But den't trust it too much. The most recent user activity is not necessarily
related to the GP at all. In fact, you should carry a highly skeptical
attitude into all of your debugging efforts, always seeking a thorough and
precise understanding of what your program is doing, while understanding
thoroughly how it is supposed to work.

To put more debugging information into GP.OUT, you can carefully add some code
to the lower part of appgprept() in PLBBS.C. You’ll see the fprintf() calls
that formatted all of this information, along with careful checking in case
pointers are not usable. (Using a bad pointer inside the GP report routines
is like accidentally exploding a bomb at the crime scene -- you’ll lose the
evidence from the original crime due to the new one on your hands.)

DLL Selectors

This is a list of the starting selectors for each of the DLL’s you have
loaded on the BBS. You can find out in which DLL the GP occurred by finding
the highest DLL starting selector that is less than the GP selector.

In the example above, the GP occurred at address 2d4f:031a. That’s somewhere

in GALTLC because GALTLC.DLL starts at 2d3f and the next one, GALTXV starts at
2d6F. There’s a little more you can find out here. Selectors are created in

increments of 8 hexadecimal.

2d3f GALTLC starting selector
2d47 \run286\bc3\1lib\cOphdll.cbj
2d4r \bbsv6\phobj\mjrtlc.cbj

2d57 \

245f > (other selectors used by GALTLC)
2d67 /

2d6f GALTXV starting selector

2477

2d7£

After the starting selector, selectors are created for each of the .0BJ
files in the order they are listed in the .LNK file. In GALTLC.LNK there
are two .OBJ files. The GP occurred in the code from MJRTLC.OBJ, which of
course comes from MIRTLC.C. The offset starts at 0000 in the code from that
file, so the error occurred 03la bytes into the cbject code produced from
MJRTLC.C.

Note: This selector counting falls apart if you see a .LIB file called out
in the .LNK file -- this may link the equivalent of several .OBJ files and
use up several selectors. There is a .LIB file linked among the .OBJ files
in LTBBS.LNK, for example, the linker response file that goes into making
MAJORBES .EXE.

Once you get a feel for these things you’ll know that 03la should be pretty
near the beginning of a file as big as MJRTLC.C.

DEV-192 Galacticomm

Stack Dump

The stack dump is very relevant to "the crime" of the GP, and it’s rich with
information -- too rich. Let’s jump ahead to the "Routines" section with
the return address chain at the bottom. That's where the most meaningful
information is pulled from the stack dump and given symbols from the source
code where possible. We’ll come back to the stack dump later.

Routines in the Return Address Chain

At the bottom of GP.OUT are the chain of return addresses pulled from the
stack. These reflect the nesting of subroutines that the CPU was executing
at the moment of the GP. The first one in the list, 0197:0ba3, is pulled
from the stack at 0707:2A8A or at SS:BP+2. If you know how C language
subroutines are implemented in assembly language, it’s not hard to realize
that this is the return address to some ancestor routine that called
(perhaps indirectly) the routine in MJRTLC.C where the GP was triggered.

The first thing that happens in some subroutines is "PUSH EP" then "MOV
BP,SP". This means the 2 bytes at [BP+0] are the old BP, and the 4 bytes at
[BP+2] are the return address. But not all routines save and reload BP.
Since it's the chain of BP’s in the stack that we trace, not actually the
return addresses, some routines get "skipped". If a routine doesn’t save
and reload BP, we won't find the return address to its parent that was
pushed when the routine was called. So its parent will appear to be
skipped in the list of routines at the bottom of GP.OUT.

So far we know:
1. Somewhere in a routine early in MJRTLC.C a GP was triggered.

2. That routine was called (perhaps indirectly) by a routine
between gopage() and dspmnu().

A "grep" of source files turns up gopage() and dspmnu() in MENUING.C. The
call to the routine in MJRTLC.C must be somewhere between these points.
That is, in one of the routines gopage(), gomodl(), gocond(), gomenu(),

or gofile(). (The call couldn’t be in dspmnu() itself because 0197:0ba3 is
less than 0197:0e3d, the start of dspmnu().)

The call must be in gomodl(), because that fires off the sttrou() entry
point for a module page (page 33), and early in MJRTLC.C is telecn(), the
sttrou() entry peint for the Teleconference module.

The next ancestor of gomodl() shown in the return address chain is between
nxtlof () and curusr(). This has a different selector than gomodl() (018f
versus 0197) so it must come from a different file. In fact it comes from
MAJORBBS.C. You'll notice that there’s no calls to gomodl () in all of
MAJORBBS.C, but there’s one in MENUING.C inside of gopage(). Hmm, this is
making sense. There are reams of calls to gopage() in MAJORBBS.C for menu
tree pages in general. And gopage() calls gomodl{) for module pages in
particular. gopage() was skipped in the return address chain. That’s
probably because gomodl(), after various compiler optimizations and
shenanigans, didn’t need to save and reload BP.

Developer‘’s Guide DEV-193

Stack Dump, Revisited

The notations like >2aaa< in the stack dump are BP save locations. When
traversing the chain of saved and loaded BP's to generate the return address
chain at the bottom of GP.OUT, the BP save locations are flagged with little
"> <" symbols. The return addresses shown at the bottom immediately follow
each of the "> <" symbols. For example, the ">2aaa<" is followed by Oba3
and 0197. 0197:0ba3 is the first return address in the list.

Close scrutiny of the stack dump can help us determine the values of
parameters passed between routines, and the values of automatic stack
variables. In some cases, the values of pushed registers are also of some
help in investigating the circumstances of the crime. But to do any of
this, we have to look at the assembly language listing of the code where the
GP happened and where the ancestor routines did their subroutine calling.
And an assembly language listing lets us find out the exact instruction that
caused the GP. Let'’s start with the routine where the GP occurred, probably
telecn(), definitely in MJRTLC.C.

Assembly Listing

To get the assembly language listing of MJRTLC.C, we have to generate
assembly source code and then assemble it and make a listing:

CD \BBSV6\SRC

CTDLL -S MJRTLC

CD \BBSV6\PHOBJ

TASM MJRTLC,NUL,MJRTLC;

(Use "CTPH -S" for getting the assembly listing of files that are part of
the kernel -- that go to make up MAJORBBS.EXE.) The "-S" parameter (capital
S, not small s) asks for an .ASM assembly source file to be output instead
of an .0BJ. Then TASM assembles \BBSV6\PHOBJ\MJRTLC.ASM and makes a listing
file in \BBSV6\PHOBJ\MJRTLC.LST. (The NUL means don’t generate an .OBJ file
from the .ASM file.) That .LST file is pretty big. It’s where the offsets
and object code can be found. To find what we’re looking for, there are two
clues: The GP location is 2d4f:03la, so we can look in the vicinity of the
offset 03la. And the code scmewhere near there should be 26 83 0f 01
(from the fifth line of GP.OUT). Turns out, it’s somewhere exactly at 03la:

Turbo Assembler Version 3.1 07/13/92 11:19:52 Page 10
mjrtlc.ASM
530 :
531 H case 0:
532 : tptr->flags |=NOPAGE ;
533 g
534 0316 C&4 1E 0077r les bx,dword ptr tptr
535 031A 26: 83 OF 01 or word ptr es: [bx],1
536 L
537 E usrptr->substt=1;
538 H
539 031E B8 0000s mov ax,seg _usrptr
540 0321 8E CO mov es, ax
541 0323 26: ¢4 1E 000Ce les bx,dword ptr es:_usrptr
542 0328 26: CT 47 08 0001 mov word ptr es: [bx+8] ,1

DEV-194 Galacticomm

Notice that the sixteen bytes of code don’t match exactly where "0000s" goes
with "£7 04"? Those "0000s" and "0000e" symbols means that the exact object
code is not known at compile (or assembly) time. It will take linking and
loading to find out those exact values. So, the object code does confirm
that we’re looking at the right instruction (the "or" instruction).

So, here's the crime scene, what was the crime? The instruction was "or
word ptr es:[bx],1". That’'s a bitwise OR of the value 1 into some memory
location. Notice that the very helpful assembly comments show the original
C source code near the relevant assembly code. Turns out the NOPAGE
constant is 1, sc "tptr->flags|=NOPAGE" is for sure the guilty instruction.
A quick look at the registers in line 3 of GP.OUT shows that es:bx is
0000:0000. That's pretty wild, isn’t it?. OR’ing to the location addressed
by NULL is definitely GP territory. From MJRTLC.C we see that "flags" is
the first field of the tlc structure (tptr is type "struct tlc *"), so tptr
itself must be NULL.

A scrutiny of the C source logic reveals that tptr is not expected to be

initialized here: it’'s just a low-level looping pointer. We cheated of
course; this is exactly the line we inserted to make this GP happen.

Developer’s Guide DEV-195

INDEX

%-symbols, 61
.ANS files, 26
.ASC files, 26
.BCR (Btrieve database creation) files, 156
.DAT (database) files, 25, 156
.DEF files, 19
.DLL files, 17-18
creating, 19-21
custom language editor, 169-172
language editor, 27
rebuilding, 21
.DOC files, 24
.EXE files
language editor, 27
rebuilding MAJORBBS.EXE, 17
.IBM files, 26
.LIB files
created by IMPLIB, 19
.LNK files, 19, 20, 172, 192
.MCV files
using, 69
.MDF files, 8, 23-28
language definition, 26
language editor, 169-172
.MSG files, 8
.MDF directives for, 25
adding to, 55-63
format, 56
language limit, 54
levels, 55-56
routines for reading and wrxtlng, 172
.RLN files, 8 y
.VIR (virgin database) files, 156
.ZIP file, 125
65536 Hz timer, 178
" (caret character), 176

A

aabbtv(), 151

Abort uploads, 112
abs(), 179

absbtv(), 151

acclass (structure), 159
Accounting, 93, 93-96
acgbtv(), 155

Add-on Options, 6
agebtv(), 155

agtbtv(), 155

DEV-196 Galacticomm

ahibtv(), 156

alcblok(), 43

alcdup(), 43

alcmem(), 42

alcrsz(), 43

alctile(), 44

alczer(), 43

alebtv(), 155

alldgs(), 176

Mlocating memory, 42-45
alobtv(), 156

altbtv(), 155

ANSI Graphics, 140-142
ANSI screen attributes, 141
ansion(), 140

applyem(), 172

agnbtv(), 156

agpbtv(), 156

Arquments, user input, 74
Assembly listing, 194
Attributes, display, 137
Attributes, file, 184
Audit trail, 39, 148
auswait (integer), 88
Auto-cleanup, (see Cleanup)
Autosensor routines, 86-89

auxcrt (), 139
B

baudat (), 148
BBSes

Galacticomm’s Demo System, 22, 102, 106, 109, 114, 125

Phar Lap’s, 5
BBSGEN.DAT, 160
BBSMSX utility, 18, 21, 64
BBSPRV (user class), 31, 85
BBSRPT.MAK, 168
BBSV6, 13
BCH286.LIB, 19, 172
begin polling(), 50
belper(), 140
bgnene(), 75
bgnedt (), 99
Binary (yes/no) CNF options, 58
Blank padding, 177
Block memory allocation, 43
Btrieve, 6
Btrieve database engine, 52, 149-156
.MDF directive for, 25
using BUTIL, 156
btuhrt (variable), 178
btvblk (structure), 149
BTVFILE (structure), 149
BTVSTF.H, 16
BUTIL (Btrieve utility), 156
By reference upload, 111
BYEBYE flag, 83
byenow(), 83

Developer’s Guide

DEV-197

C

C source conventions, 16

calerc(), 179

catastro(), 51-52

Channel number, 39
Channel status, 148
Channel type, testing, 40

channel[], 40

Character CNF options, 58
Character string handling routines, 174-177
Charging users, 93

chimove(), 45
chkdft(), 80
choose(), 166
choout (), 167
choowd(), 167
chropt(), 68

Class database, 159

Cleanup

.MDF directive, 25
mcurou() entry point, 38
statistics screens, 146

clfit(), 182

clingo (integer), 53, 54
Closing database, 153

clreol(), 139

clrmlt(), 70-73
clrprf(), 70, 71

clrxrf(), 80
clsbtv(), 153
clsize(), 182
clsmsg(), 67

Cluster size, 182

cncall(), 77
cncchr(), 76
cnchex (), 76
encint(), 76

cnelng(), 54, 77

cnclon(), 76
cncnum(), 76
cnesig(), 76
cncuid(), 76
cnewrd(), 76

cncyesno(), 28, 76
CNF options, 55-68

changing, 68
compiling, 64

creating, 55-63

format, 56

hinge interdependency, 62

languages, 55, 63

level numbers, 55-56

routines for reading and writing, 172

types, 58-61

updating to new version, 8
using online, 65-68

cntcand(), 89
cntdir(), 182

DEV-198

Galacticomm

Code examples
beeping the operator, 140
catastro, 52
choose() equivalent, 167
choosing language, 54
CNF option writing, 173
command concatenation, 78
cycle mediating, 49
database acquire, 156
database get, 155
database query, 154
downloading, 129-130, 131-135
feedback to Sysop, 100-103
finish entry point, 38
generic user database, 160
GP generating, 188
handle-connect vector, 84
initializing a module, 30
language editor handler, 169
multilingual, 70
pseudo-key handler routine, 92
scanning a text file, 181
uploading, 114-115, 116-120
video output routines, 143
window entry validation, 166
cofdat (), 179
color (global variable), 164
Color
ANSI coding, 141
IBM display attribute, 138
versus monochrome, 164
Command concatenation, 75-79
Commands, global, 96
Compiler libraries, 19
Compiler updates, 22
Compiling
CNF options, 64
for a .DLL, 18, 21
MAJOREBS.EXE, 17
offline utilities, 168
online source, 18
Compressed file, 125
Computer requirements, 1
CONCEX flag, 78
condex(), 78
Confidence factors (autosensing), 88
CONNECT string handling vector, 86
Connect time, intercepting vectors, 84-86
Context of user, 31
state code, 192
Control characters, 176
cputype(), 184
CRC (cyclic redundancy check), 179
crdrat (usrptr-» field), 96
Creating databases, 156
Credit consumption rate, 96
Credits, 93, 93-96
Critical error handler, 184
Cross referencing User-IDs, 79
CTDLL.BAT, 18, 21

Developer’s Guide DEV-199

CTL.BAT, 168
CTPH.BAT, 18, 194
curatr (structure), 143
curcurs(), 145
curcurx(), 139
curcury(), 139
curmbk (pointer), 66
cursact(), 140
cursiz(), 145
cursor
positioning
ANSI command, 141, 142
locate() function, 139
size, 145
curusr(), 73
Customizing, 1
Cycle mediating, 48

Data structures, 41-47
Btrieve databases, 149
Databases, 149-161
acquire, 155
close, 153
creating, 156
delete, 152
file identifiers, 149
functions, 149-156
generic user, 160
get, 154
insert, 152
opening, 150
physical-order scan, 151
query, 153
spare space, 160
system variables, 157
update, 152
user account, 158
user class, 159
variable length record, 153
Date and time
files, reading and setting, 182-183
routines, 178-179
upload handler formats, 110
upload handler setting, 112
datofe(), 179
daytoday(), 178
dcdate(), 179
dclvda(), 46
dctime(), 179
Debugging, 185-195
Decorator analogy (exit points), 108
dEdcrd(), 94
Default selection character, 80
delbtv(), 152
Delete, database, 152
depad(), 177

DEV-200 Galacticomm

Developer’s C Source Kit, 4
Developer-1D, 3
reserved, 3
Development, 1
directories, 6, 14
environment, 11-22
your own Add-on Options, 6, 19, 23, 29
dinsbtv(), 152
Directories
development, 14
overall structure, 13
runtime, 13
size measurement, 182
test for existance of, 184
your development files, 6
Disk I/O routines, 181-184
DISK1.DID, 8
dlarou() module entry point, 38
DLL (Dynamic Link Library), 19,
(see also about .DLL files at the beginning of the index)
dlload(), 171
DOS critical error, 184
DOS device names, 183
DOs file time and date, 182-183
DOSCALLS.H, 184
DOSFACE.H, 16
Download, 121
ASCII, 120
download handler routine, 124-128
examples, 129-130, 131-135
Drive number, 182
drvnum(), 182
dsairp(), 178
DSKUTL.H, 16
dspche(), 167
dupdbtv(), 152
Duplicate string allocation, 43

Echo on/off/secret, 75
echon(), 75

echsec(), 75

Editor DLLs, 169-172
edterr[], 170

edtimr, 99

EDTOFF.C, 171

EDTOFF.H, 170, 171

edtval(), 164

edtvalc (integer), 165
enairp(), 178

endecnc(), 76

English/RIP, installation, 9
Entering and exiting a module, 34

Developer’s Guide DEV-201

Entry point (module)

dlarocu(), 38
finrou(), 38
huprou(), 38,
injrou(), 35

lofrou(), 37,
lonrou(), 32,
mcurou(), 38
stsrou(), 35,

sttrou(), 33,
variables, 31

Enumerated CNF options, 5§
Error message output, 51
Examples, (see Code examples)
Exception handling, 51-52

EXICNC, 78
explode(), 162

expledem (integer), 163

explodeto(), 163

EXPORT (routine type), 17

Exported symbols

Borland libraries, 19
Exporting symbols, 17, 19, 24
Extended C Source Suite, 5
Extensions on file names, 15
extoff(), 37, 53, 71, B2
extptr (pointer), 31, 53, 54, 71

F

FAMDIR (mask for fndlst()), 184
Feedback example, 100-103

fgetstg(), 182
File names

Developer-ID prefix, 3

47

46
46

46
46

extensions, 15, 26, (see also the beginning of the index)

parsing, 183
reserved, 183

File time and date, 182-183

File transfer

ASCII download, 120
definging a protocol, 136

upload, 107

using, 107-135
fileup(), 107
FILEXFER.H, 107, 12
File

attributes, 18

directory structure, 13

finding, 183
handles, 50

I/0 routines, 181-184
finrou() module entry point, 38

Flash games, 2
fndlst(), 183

fndblk (structure), 183

fndnxt (), 183
fnroot(), 183

DEV-202

1

4

Galacticomm

fnwext (), 183
fopen(), 50
Free disk space, 182
free()
with alcblok() or alctile(), 45
with alcmem(), 42
with stgopt(), 68
frzseg(), 139
fsddan(), 106
fsdfxt(), 106
fsdnan(), 106
fsdord(), 106
fsdpan(), 106
fsdroom(), 103
fsdxan(), 106
FSE, (see Full Screen Editor)
fstcand (integer), 89
ftfbuf (buffer), 109
ftfpsp (protocol specificaticns), 109, 125
FTFREF flag, 111
ftfscb (session control block), 109, 125
ftgnew(), 121
ftgptr, 121
ftgptr (tag table entry), 125
ftgsbm(), 122
ftplog(), 136
Full Screen Data Entry, 103-106
Full Screen Editor, 99-103
example, 100-103
FUPXXX, upload handler exit points, 110-113

G

gabbtwv(), 151

Galacticomm registering names, 2
GALDNX, download example, 129-130
GALDNX2, download example, 131-135
GALFBK feedback example, 100-103
GALIMP.LIB, 22

GALP&QR.MAK, 168

GALUPX, upload example, 114-115
GALUPX2, upload example, 116-120
GCOMM.H, 16

GCOMM.LIB, 16

gerbtv(), 155

gdedcrd(), 94

genbb (pointer), 161

General Protection (GP), 186-195
Generic user database, 160
gen_haskey(), 90

gegbtv(), 154

getasc(), 67

getbtv(), 150

getchc(), 144

getdfre(), 182

getdft(), 80
getdtd(), 182
getmsg(), 66

Developer’s Guide DEV-203

gettnd(), 183
ggebtv(), 154
ggtbtv(), 154
ghibtv(), 154
glebtv(), 154
Global commands, 96-98
possible vdaptr conflict, 42
globalcmd(), 97, 98
globtv(), 154
gltbtv(), 154
gmdnam(), 24, 30
gnxbtv(), 154
GP.OUT, 190-195
customizing, 191
example, 190
GPHDLR (offline Hardware Setup option), 189
gprbtv(), 154
Group number (channels), 39, 40
Group type code, 40
grpnum([], 40
grtype[], 40
gtsterd(), 95

Handling, user, 81-86
Hanging up, 83
haskey(), 91
hasmkey(), 90
hdle25 (handle-X.25-connection vector), 86
hdlchc(), 167
hdlenc (handle-connect-string vector), 86
hdlcon (handle-connect vector), 84
hdlnrg (handle-non-RING-string vector), 85
hdlrng (handle-RING string vector), 85
hdluid(), 79
Hexadecimal CNF options, 60
hexopt(), 68
Hinge specification (on CNF options), 62
hrtval(), 178
huprou() module entry point, 38

use of VDA in, 47

IBM display attributes, 137

ibm2ans(), 142

ibsize (for language editors), 170

IMPLIB (Borland’s utility), 22

IMPLIB utility, 19

Import libraries, 19

inimsg(), 65

iniscn(), 162, 164

Initialization routine, 29

init xxx() routine, 17, 19, 29, 97
language editor, 171

DEV-204 Galacticomm

injoth(), 72
with injrou(), 35
injrou() module entry point, 35
inplen (integer), 74
Input
offline operator window, 164-167
operator keystrokes, 144-145
user keyboard, 74-80
insbtv(), 152
Insert, database, 152
INSTALL.EXE, 8
Installation
Add-on Options, 6
Btrieve, 6
Developer’s C Source Kit, 4
Extended C Source Suite, 5
of your Add-on Option, 8
.MDF directive, 24
testing, 7
instat(), 81
Intercepting connect-time vectors, 84-86
Intercepting user input, 98
INTERNAL (.MDF directive), 25
invalid pointer, 61
invbtv(), 152
isripo(), 82
isripu(), 82
isselc(), 176
istxve(), 176
isuide(), 176
I1SX25 flag, 40

J

jmp2che(), 167

K

kbhit(), 144

Keyboard input
operator, 144-145
scan codes, 144
user, 74-80

Keys (security), 90-92

L

12as(), 176

LAN channel, testing for, 40

LANGOP, 89

Language subsets, 57, 70, (see also the System Operations Manual)
Languages, 53-54

languages[] array, 53

Developer’s Guide DEV-205

Languages
.MDF files, 26-28
autosensing, 88
changing CNF options offline, 173
choosing, 54
editor DLLs, 169-172
in .MSG files, 55, 63
maximum number of, 54
user input, 77
user output, 70-73
Large memory allocations, 43
Large model programming, 168
Large numeric CNF options, 60
lastwd(), 176
lclmbk (pointer), 66
ldedcrd(), 94
Levels in .MSG files, 55-56
lingyn(), 53, 77
Linking
.DLL, 18, 19
MAJORBBS.EXE, 18
offline utility, 168
undefined symbol errors, 19
your .DLL, 21
listing(), 120
llnbtv(), 153
Ingfnd(), 53
Ingfoot(), 54
Inglist(), 54
Ingopt(), 67
LNK.BAT, 168
locate(), 139
Locks & Keys, 90-92
lofrou() module entry point, 37, 46, 71
Logging off, 83
lonrou() module entry point, 32, 46, 71
ltsterd(), 95

MAJORBBS.DEF, 22
MAJORBBS.EXE, 17-18
margc (integer), 74
margn(], 74
margv([], 74
Matching strings, 174-175
max(), 179
maxcand (integer), 89
MAXTAGS (CNF option), 121, 123
mcurou() module entry point, 38
mdfgets(), 181
memcata(), 52
Memory
allocation, 41, 42-45
available, 45
handling, 45
Menu select character, 176
Menu Tree, editor selection, 169

DEV-206 Galacticomm

min(), 179
Model of compiler
Large model, 168
Phar Lap Huge model, 14, 17
module (structure), 30, (see also the MAJORBBS.H file)
Module definition files, 23-28, 29
Module Name, 24
Monochrome CRT, 164
Monolingual routines, 71
monorcol (), 164
morcnc(), 76
movmem(), 45
msgscan(), 172
Multi-user programming, 48-50
Multilingual, 53-54, (see also Languages)
user output routines, 70-73
Multiple choice (operator selection), 166

Names, registering, 2
ncdate(), 178
ncedat(), 179
nctime(), 179
ndedcrd(), 94
nlingo (integer), 53
NOGLOB flag, 98
NOINJO flag, 72
now(), 178
nsexploto(), 163
nslatr (variable), 166
nterms (integer), 39
ntstcrd(), 95
NUL padding, 175
null pointer, 61
numbytp (cntdir() output), 182
numbyts (cntdir() output), 182
numcand (integer), 89
Numeric CNF options, 59
Numeric
checking for, 176
conversion, 176
routines, 179
numfils (cntdir() output), 182
numopt (), 67

o

obtbtv(), 151
odd(), 177
odedcrd(), 94
Offline operations, 162-173, (see also Operator)
Offline utility pregramming, 162-173
.MDF directive, 25
omdbtv(), 150
onbbs(), 82

Developer’s Guide DEV-207

Online User Information screen, 148
Online, user determining, 81
onsys(), 70, 81
onsysn(), 82
Operating environment, 23-68
Operator
cursor, 145
input, 144-145
interface, 137-145
multiple choice, 166
offline programming, 162-173
output, 137-144
services, 146-148
string entry, 164
window input, 164-167
window output, 162-164
opnbtv(), 150
opnmsg(), 65
Options, CNF, 55-68, (see also CNF options)
othkey(), 91
othuap (pointer), 81
othusn (integer), 81
use in injrou() module entry point, 36
othusp (pointer), 81
otsterd(), 95
outmlt(), 70, 70-73
outprf(), 69, 70
Output
offline operator, 162-164
operator, 137-144
user, 69-73
Overview, 1

P

Padded blanks, 177
Padded NUL's, 175
Paradox (language editor loading), 171
Parity, 177
parsin(), 74
Parsing
file names, 183
general routines, 175, 176
user input, 74, 76
pascrit(), 184
Password echo mode, 75
Permission, (see Security)
PFBSIZ, 69
PFCEIL, 75
pfnlvl (integer), 75
PHAPI.H, 16
Phar Lap DOS-Extender
directories, 14
installation, 5
updates, 22
using, 17
PHGCOMM.LIB, 50
PLPLAT2.ZIP, 5

DEV-208

Galacticomm

pmlt(), 70-73
pointer, null or invalid, 61
Polling routine, 50, 71
Pop-up windows, 162-167
poslng (pointer to 2D array), 88
prat(), 140, 163
prf(), 69, 71
prfbuf (buffer), 70
prfbuf (internal buffer), 69, 70
prfbuffers (array), 71
prfmlt(), 70, 70-73
prfmsg(), 65, 70
prfpointers (array), 71
prfptr (internal pointer), 69, 70
printf(), 137
printfat(), 140
Profanity, 75
proff(), 140, 163, 165
Protected mode, 186-195
Protocol definition, 136
Protocol validation, file transfer, 108, 122
Protocols

download, 122

upload, 107
Prototypes (C functions), 16
Pseudo-keys, 92
ptrblok(), 44
ptrtile(), 44

Q

gegbtv(), 153
ggebtv(), 153
ggtbtv(), 153
ghibtv(), 154
glebtv(), 153
qlobtv(), 153
gltbtv(), 153
gnxbtv(), 153
gprbtv(), 153
grybtv(), 150

R

rawmsg(), 67
rdedcrd(), 94
Reading .MSG files (offline), 172
Reading lines from a text file, 180, 181
Real-time routines, 177-178
Reference upload, 111
regautsns(), 87
Registering
autosensor routines, 87
Developer-ID’s, 2-3
global commands, 98
modules, 30

Developer’s Guide DEV-209

Registering (continued)
names with Galacticomm, 2

offline language editors, 171

pseudo-keys, 92

statistics screens, 146

text variables, 73
register module(), 30

register pseudok() (pseudo-keys), 92

register stascn(), 146
register textvar(), 73
Release notes (.RLN files), 8
Reliability, 185-195

Remodeling analogy (exit points), 108

Replaces, .MDF directive, 24
repmen(), 45

Requirements, computer, 1
Requires, .MDF directive, 24

Reserved DOS device names, 183

Resizing allocated memory, 43

Resuming an aborted upload, 110
RING string handling vector, 85

ripdfd (integer), 82
ripidx (integer), 82
rmvwht (), 177
rstbtv(), 150
rstcur(), 145
rstloc(), 139

rstmbk(), 66
rstrin(), 74
rstwin(), 138

rsvnam(), 183
rtihdlr(), 177
rtkick(), 177
rtsterd(), 95

Runtime directory, 13
Runtime environment, 11

S

sameas(), 174
samein(), 175
samend(), 174
sameto(), 174
Scan codes (keyboard), 144
Scanning .MSG files, 172
scblank(), 139
scnoff(), 143
secchr (character), 75
Secret echo mode, 75
Security, 90-92

uploading files, 110
selatr (variable), 166

Selection character, default, 80

Selectors, 192
Services, user, 90-136
setatr(), 137, 164
setbtv(), 150
setbyprot(), 89

DEV-210

Galacticomm

setenf (), 172
setcrit(), 184

setdtd(), 182

setmbk(), 66

setmem(), 45

settnd(), 182

setwin(), 138

shibtv(), 151

shochl(), 148

shocst (), 148

Size of a set of files, 182

Size restrictions on uploads, 111
sizmem(), 45

skpwht (), 175

skpwrd(), 175

slobtv(), 151

snxbtv(), 151

Software updates, 22

sortstgs(), 177

Spare space in databases, 160
Splitting up a big task, 48-50
spr{), 175

sprbtv(), 151

Stack dump, 193

State code, 192

STATIC (routine type), 17
Statistics, 146-147

status (variable), 35

Status of users, 81

Status, user, 81-86

stgopt(), 68

stop polling(), 50

stranslen(), 106

String CNF options, 60

String handling routines, 174-177
stsrou() module entry point, 35, 46, 71
sttrou() module entry point, 33, 46, 71
stzcpy(), 175

Submitting tagspec for download, 122
Subsets (language), 57, 70, (see alsc the System Operations Manual)
supchc(), 167

System Variables database, 157

T

Tag table entry (for downloads), 121
tagspec, 123
Tagspec (for downloading), 121
Task splitting, 48-50
TASM assembler, 194
Terminal
user input, 74-80
user output, 69-73
Text CNF options, 61
Text File Scanning (tfsxxx() routines), 180-181

Developer’s Guide DEV-211

Text variables
defining, 73
translating, 67
using, (see your System Operations Manual)
valid characters in name, 176
tfsxxx() routines, 180, 180-181
Tiling large memory regions, 44
Time and date
files, reading and setting, 182-183
routines, 178-179
upload handler formats, 110
upload handler setting, 112
Timing routines, 177-178
TLINK linker, 18, 19, 21
today(), 178
tokopt (), 68
tshmsg (buffer), 125
tsterd(), 95

U
uacoff (), 37, 82
uhskey(), 91

uinsys(), 81
UNCONDITIONAL (.MDF directive), 25
Undefined symbol errors (linker), 19
unfrez(), 139
unpad(), 177
Update, database, 152
Updates, software, 22
.M5G files, 8
updbtv(), 152
Upload, 107
by reference, 111
examples, 114-115, 116-120
resume after abort, 110
upload handler routine, 108-113
upvbtv(), 152
usaptr (pointer), 31
user (structure), 31, (see alsoc the MAJORBBS.H file)
User account database, 158
User class database, 159
User number, 39
User-ID
cross referencing, 79
validity testing, 176
user[], 37
User
hanging up on, 83
input, 74-80
intercepting input, 98
interface, 69-89
output, 69-73
services, 90-136
status, 81
status and handling, 81-86
usracc (structure), 31, 82, 158

DEV-212 Galacticomm

usridx(), 40
usrnum (integer), 39
changing its value, 73
usrptr (pointer), 31
Utility, (see Offline utility)

\'J

valdpc(), 122

validig(), 165

validyn(), 165

valupc(), 108

Variable length record, database, 153
Variables for module entry points, 31
vdaoff(), 47

vdaptr (character pointer), 46

vdasiz (integer), 46

vdatmp (character pointer), 47
Vectors, connect-time handling, 84-86
Versions (software), 21

vidkey(), 91

Viewing compressed files, 125
Volatile Data Area, 32, 33, 41, 42, 46-47
Voting confidence factors, 88

w

Whitespace characters, 175, 176, 177
Wildcards
breaking down with fndlst(), 183
downloading application, 131
file/directory counting, 182
text file scanning, 180
Window (pop-up)
input, 164-167
output, 162, 162-164
Ariting .MSG files, 172

X

X.25 channel, testing for, 40
X.25 connection handling vector, 86
*1tetls(), 176

Yes/No (binary) CNF options, 58
ynopt(), 68
y 4

ZMODEM resume after abort, 110

Developer’s Guide DEV-213

